

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

Overview

The 2009 & 2010 PEMFC cost analyses are based on updates to the bottom-up high-volume stack and BOP cost models developed in 2008.

Timeline

- Base Period: Feb 2006-May 2008
 - » 100% complete
- Option Yr 1 & 2: May 2008-Feb 2010
 - 100% complete
- Option Yr 3: Feb 2010-Feb 2011
 - 15% complete

Barriers							
 Barriers addressed 							
» B. Cost	» B. Cost Cost Targets (\$/kW)						
	2009 2010 2015						
Fuel Cell System	60	45	30				
Fuel Cell Stack2515							
* Manufactured at volume of 500,000 per year.							

Budget

Total project funding

>>

>>

- » Base Period = \$415K
- » No cost share
- ♦ FY08 = \$50K
- ♦ FY09 = \$51K
- ♦ FY10 = \$92K

Partners

- Project lead: TIAX
- Collaborate with ANL on system configuration and modeling
- Yong Yang¹ : mfg. cost modeling

1

 Feedback from Fuel Cell Tech Team, Developers, Vendors

Objectives

	Objectives
Overall	 Bottom-up manufacturing cost assessment of 80 kW direct-H₂ PEMFC system for automotive applications
2009	 High-volume (500,000 units/year) cost projection of ANL 2009 PEMFC system configuration assuming an NSTFC-based MEA and a 20 µm PFSA membrane >Bottom-up manufacturing cost analysis of <i>both</i> stack and BOP >Sensitivity analyses on stack and system parameters Independent peer review of cost analysis methodology and results Comprehensive report on the 2008 PEMFC cost analysis (high-volume, bottom-up stack and BOP cost)
2010	 Preliminary high-volume (500,000 units/year) cost projection of ANL 2010 PEMFC system configuration assuming an NSTFC-based MEA and a 20 µm reinforced PFSA membrane Metal bipolar plates Stack conditioning

BOP = Balance-of-Plant NSTFC = Nano-Structured Thin Film Catalyst PFSA = Perfluorosulfonic acid

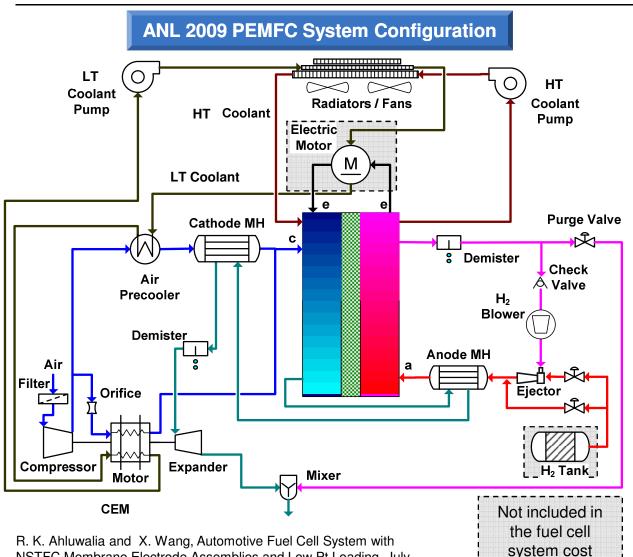
MEA = Membrane Electrode Assembly

Background

Over the past year, we updated the PEMFC cost assessment based on input from ANL on the 2009 stack performance parameters.

- In 2009, we updated the system configuration, stack performance assumptions and stack and BOP component specifications based on ANL modeling results
 - Based cost assessment on ANL 2009 PEMFC system configuration assuming an NSTFC MEA and a 20 μm PFSA membrane
 - Updated bottom-up cost assessment of stack, balance of stack and stack assembly
 - Replaced EWH by planar MH for cathode air and anode fuel humidification
 - Costed HT & LT radiators, fans, coolant pumps; air precooler; flow orifice for CEM
 - Participated in independent peer-review of our cost analysis methodology and results
 - Submitted a comprehensive report to DOE on our 2008 PEMFC cost analysis
- In 2010, we are working on changes based on ANL 2010 PEMFC system:
 - NSTFC MEA with 20 μm reinforced PFSA membrane
 - Metal bipolar plates thermal nitrided, Au-Nanoclad
 - Non-woven carbon paper GDL
 - Eliminate anode fuel humidifier, pleated planar MH for cathode air humidification
 - Other BOP updates pending ANL input
 - Stack conditioning pending funding authorization from DOE

MEA = Membrane Electrode Assembly EWH = Enthalpy Wheel Humidifier PFSA = Perfluorosulfonic acid NSTFC = Nano-Structured Thin Film Catalyst MH = Membrane Humidifier


Approach Costing Methods

We used a bottom-up approach to determine high-volume (500,000 units/year) manufacturing cost for the major stack and BOP components.

Stack Components	BOP Components
 Catalyst Coated Membrane Electrodes Gas Diffusion Layer (GDL) Membrane Electrode Assembly (MEA) Bipolar Plates Seals 	 Radiators (HT, LT) Cathode Planar Membrane Humidifier (MH) Anode Planar MH Compressor-Expander-Module (CEM) H₂ Blower
 » Develop production process flow chart for key subsystems and components » Obtain raw material prices from potential suppliers » Estimate manufacturing costs using TIAX cost models (capital equipment, raw material costs, labor rates) 	 » Develop Bill of Materials (BOM) » Obtain raw material prices from potential suppliers » Develop production process flow chart for key subsystems and components » Estimate manufacturing costs using TIAX cost models and Boothroyd Dewhurst Design for Manufacturing & Assembly (DFMA®) software

- We used literature/experience-based estimates for stack components such as sensors, controls, control board and wire harness. We scaled quotes/catalog-based estimates for BOP components such as air precooler, flow orifice, coolant pumps, radiator fans, H₂ ejectors, valves/regulators and piping/fittings.
- We used the TIAX technology-based bottom-up cost model for the HT/LT radiators, and cathode/anode planar MH, while we used the DFMA[®] bottom-up manufacturing cost model for the CEM and H₂ blower.

Approach 2009 System Configuration

NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21,2009

((TIAX

NSTFC = Nano-Structured Thin Film Catalyst CEM = Compressor Expander Motor MH = Membrane Humidifier

Fuel Management

- Parallel ejector-pump hybrid
- 35% pump efficiency

MEA = Membrane Electrode Assembly ANL = Argonne National Laboratory

assessment

Key features

Stack

- 3M NSTEC MEA
- 20 μm unsupported membrane
- 0.05 (a)/0.1 (c) mg/cm² Pt
- 90 °C, 2.5 atm
- Graphite bipolar plates
- Woven carbon fiber GDL

Air Management

- CEM module
- Air-cooled motor/Air-foil bearing

• Efficiencies at rated power: 70% compressor, 73% expander, 86% motor, 87% controller

Water Management

- Cathode MH with precooler
- Anode MH w/o precooler

Thermal Management

- Advanced 24-fpi louver fins
- 55% pump + 92% motor efficiency
- 45% blower + 92% motor efficiency

5

The high-volume manufactured cost of the 2009 PEMFC stack for six scenarios^{1, 2} is estimated to range between \$19/kW and \$40/kW.

Key Cost Assumptions		2009 Stack Scenarios ^{1, 2}					
Key Cost Assumption	S1	S2	S 3	S 4	S 5	S6	
System net power	kW _e			80)		
Stack gross power ²	kW _e	91.5	92.1	92.3	91.6	91.8	92.1
Cell voltage (rated power) ²	V	0.729	0.690	0.659	0.736	0.693	0.661
Stack gross power density ²	mW/cm ²	479	658	789	451	701	886
Pt loading (total) ²	mg/cm ²		0.25		0.15		
Stack Pt content	g/kW _{gross}	0.52	0.38	0.32	0.33	0.21	0.17
System Pt content	g/kW _{net}	0.60	0.44	0.37	0.38	0.25	0.20
Stack efficiency (rated power) ²	% LHV	57.4	54.5	52.1	57.4	54.6	52.1
System efficiency (rated power) ²	% LHV	50.0	47.3	45.0	50.0	47.3	45.0
System voltage (rated power)	V	300					
System active area	m²	19.1	14.0	11.7	20.3	13.1	10.4
Stack cost ³	\$/kW _{net}	40.2	30.0	25.9	33.2	22.3	18.7

¹ All scenarios assume a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, 20 μm PFSA membrane, and stack operating conditions of 90 °C and 2.5 atm.

² Based on stack and system modeling results by ANL for 2009 PEMFC system: R. K. Ahluwalia and X. Wang, March 6-July 21, 2009.

³ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

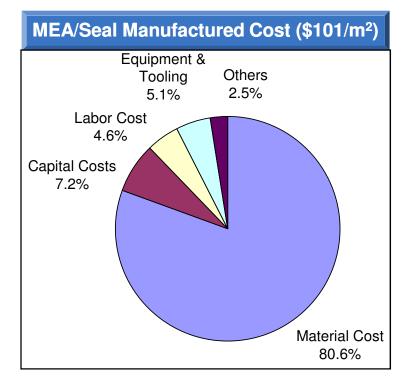
We developed stack specifications for the 2009 baseline scenario S5, consistent with the performance predicted by ANL's stack and system modeling.

TIAX Assumptions	Units	2005 ¹	2007 ^{2,3}	2008 ⁴	2009 ⁵
Number of stacks per system	#	2	2	2	2
Number of cells per stack	#	231	221	219	217
Active area to Total area	%	85	85	85	85
Active area per cell	cm ²	323	260	277	304
Cell pitch	cells/inch (cells/cm)	9.55 (3.76)	9.75 (3.84)	9.75 (3.84)	10.57 (4.16)
System voltage (rated power)	V	300	300	300	300

¹ E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, NREL/SR-560-39104, Sep 30, 2005

² R.K. Ahluwalia and X. Wang, Reference Fuel Cell System Configurations for 2007: Interim Results, ANL, Feb. 6, 2007

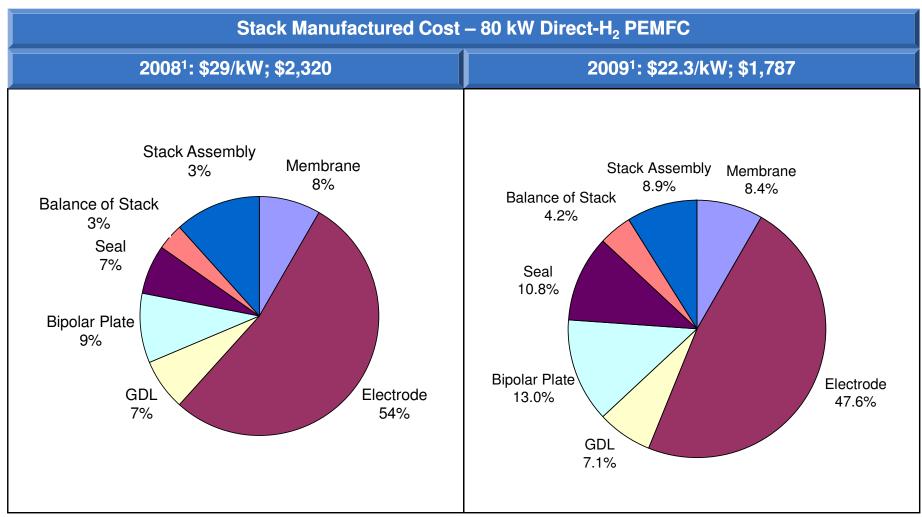
³ R.K. Ahluwalia, X. Wang and R. Kumar, Fuel Cell Systems Analysis, DOE Hydrogen Program Review, May 15-18, 2007


⁴ R. K. Ahluwalia, X. Wang and R. Kumar, Fuel Cell Systems Analysis, 2008 USDOE Hydrogen Program Review, Arlington, VA, June 9-13, 2008

⁵ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009

Using S5 as the 2009 baseline scenario, we estimated that the MEA and seal together cost ~\$101/m², of which material costs represent ~81%.

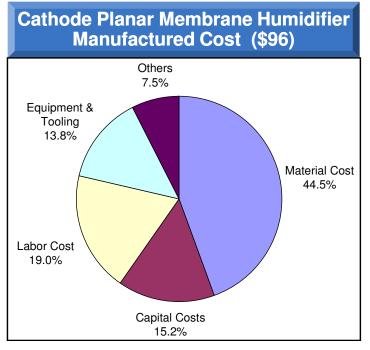
Manufactured Cost ¹	MEA (\$/m²)	Frame Seal (\$/m ²)		
Material - Membrane - Electrode - GDL	76.70 - 9.77 - 58.69 - 8.23	4.78		
Capital Cost	6.18	1.14		
Labor	3.85	0.81		
Tooling & Equipment	4.21	0.95		
Other ²	2.03	0.45		
Subtotal	92.97	8.13		
Total	101.11			

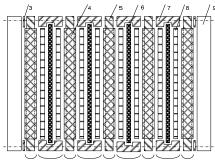

¹ Manufactured cost on an active area basis

² Other costs include utilities, maintenance, and building

In 2008, the MEA and seal cost was \$140/m² due to higher material costs for the membrane (30 μ m), electrodes (Pt loading = 0.25 mg/cm²) and GDL (275 μ m).

The electrodes represent approximately 48% of the ~\$22/kW fuel cell stack manufactured cost in 2009.




¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

Progress 2009 PEMFC System Cathode Planar MH Cost

We developed bottom-up manufacturing costs for the cathode and anode planar MH based on ANL specifications¹ and other patents².

Cathode Planar Membrane Humidifier Manufactured Cost (\$)							
Process	#	Material	Process				
Die Cut GDL	1	2.49	2.02				
Die Cut Membrane	2	7.03	2.14				
Hot Press Lamination	3	0.01	6.06				
Injection Molding Frame Seal	4	0.00	4.20				
Laser Cut Nickel Foam	5	15.44	17.16				
Injection Molding Foam Frame	6	4.39	4.34				
Injection Molding End Plate Gasket	7	0.11	0.45				
Die Casting End Plate	8	9.50	1.32				
Component Assembly	9	0.00	6.90				
QC & Testing	10	0.00	6.80				
Packaging	11	0.00	2.03				
Fastener Cost	-	3.91	0.00				
Total	-	96					

¹ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009 ² U.S. Patents 6,737,183; 6,835,477; 6,864,005; 7,078,117

MH = Membrane Humidifier

The water management system OEM cost^{1,2} is projected to be \$170.

Water Management System Cost (\$)							
Component	Factory Cost ¹	OEM Cost ^{1,2}	Comments				
Cathode Planar Membrane Humidifier	96	111	Bottom-up costing				
Anode Planar Membrane Humidifier	52	59	Bottom-up costing				
Total	148	170					

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

The cathode and anode planar membrane humidifier costs are both estimated using bottom-up costing tools.

The thermal management system OEM cost^{1,2} is projected to be \$413.

Thermal Management System Cost (\$)						
Component	Factory Cost ¹	OEM Cost ^{1,2}	Comments			
HT Radiator	83	95	Bottom-up costing			
LT Radiator	12.6	14.5	Bottom-up factory cost = \$56; Scaling by LTR heat duty, 2.9/12.9*56=\$12.6			
Air Precooler	-	43.2	Bell Intercooler \$108/unit Assuming 60% discount			
HT/LT Radiator Fan	-	75	McMaster-Carr 5990K48, Base-mount single-			
- Motor	-	- 60	phase AC motor, 0.75 HP, 3450 rpm, \$152/unit Assuming 60% discount, motor costs \$60/unit			
- Fan	-	- 15	Aluminum fan costs ~\$15/unit			
HT Coolant Pump	-	150	McMaster-Carr 5990K53, Base-mount single-			
- Motor	-	- 95	phase AC motor, 1.5 HP, 3450 rpm, \$238/unit Assuming 60% discount, motor costs \$95/unit			
- Pump	-	- 55	Aluminum pump costs ~\$55/unit			
LT/Air Precooler Coolant Pump	-	30	AWECO pump, high-volume quote			
Other	-	5	Two temperature sensors			
Total	399	413				

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

The air precooler, radiator fan, coolant pumps, and their motors are assumed to be purchased components; hence their price includes a markup.

The fuel management system OEM cost^{1,2} is projected to be \$425.

	Fuel Management System Cost (\$)						
Component	Factory Cost ¹	OEM Cost ^{1,2}	Comments				
H ₂ Blower	219.5	252	Bottom-up costing using DFMA				
H ₂ Ejectors	-	40	2 ejectors assumed @ \$20/unit				
H ₂ Demister	-	61	Parker Hannifin MN1S-6CN, 28 SCFM, ΔP=1.25 psid, rated for H ₂ to 175 F, \$152.50/unit Assuming 60% discount, H ₂ demister costs ~\$61/unit (Note: Parker Hannifin MN4S-6CN, rated for H ₂ to 200+ F, ΔP=0.35 psid, \$600/unit)				
Solenoid Valves	-	46	2 solenoid flow control valves w/ built-in ports, McMaster-Carr 61245K1, \$57.96/unit, Assuming 60% discount, solenoid valves cost ~\$23/unit				
Purge Valve	13	15	DFMA bottom-up costing; DOE Chemical Hydride Storage presentation, Sept. 2005				
Check valve	9	10	DFMA bottom-up costing; DOE Chemical Hydride Storage presentation, Sept. 2005				
Total	389	425					

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

The H₂ ejectors, H₂ demister, and solenoid valves are assumed to be purchased components; hence their price includes a markup.

The air management system OEM cost^{1,2} is projected to be \$982.

	Air Management System Cost (\$)					
Component	Factory Cost ¹	OEM Cost ^{1,2}	Comments			
CEM (Compressor, Expander, Motor, Motor Controller	687	790	Bottom-up costing using DFMA; motor controller input power updated to 9.3 kWe			
			Parker Hannifin HN4S-10CG, 226 SCFM, ∆P=2 psid, 1-¼ " NPT, 95% coalescing efficiency, \$390.60/unit, Assuming 60% discount, demister costs ~\$156/unit			
Air demister	-	156	(Note: Parker Hannifin HN4L-8CG, 98.5% coalescing eff., ΔP =2 psid, \$534/unit; Parker Hannifin HN5S-7CVPG, 99.5% coalescing eff., ΔP =0.5 psid, \$680/unit; Parker Hannifin HN6S-7CVPG, 99.5% coalescing eff., ΔP =0.35 psid, \$805/unit; Parker Hannifin HN8S-MEG, 99.95% coalescing eff., ΔP =0.35 psid, \$1,235/unit; Parker Hannifin FF4-1201-6QU, 99.97% coalescing eff., ΔP =0.35 psid, \$3,689/unit)			
Air/H ₂ mixer	-	27	Gas mixer, McMaster-Carr 3322K18, 1" pipe, \$68.42, Assuming 60% discount, air/H ₂ mixer costs ~\$27/unit			
Flow orifice	-	5	Acetal instant tube-fitting orifice, McMaster-Carr 6349T17, ½" tube, \$11.29, Assuming 60% discount, flow orifice costs ~\$4.5/unit			
Air filter	-	4				
Total	879	982				

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

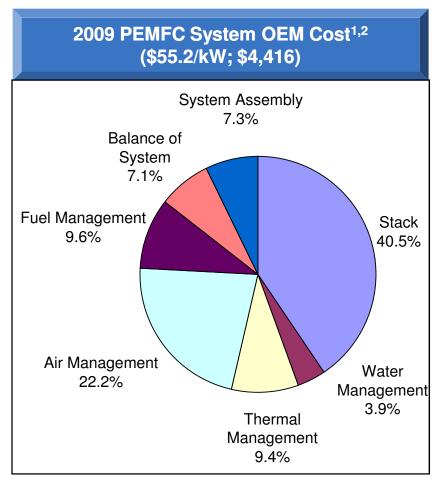
² Assumes 15% markup to the automotive OEM for BOP components

The air demister, air/H_2 mixer, flow orifice, and air filter are assumed to be purchased components; hence their price includes a markup.

Progress 2009 PEMFC System BOP Cost

The high-volume OEM cost^{1,2} for the 2009 BOP subsystems is projected to be \$1,991.

BOP Subsystem	Component	Technology / Cost Basis	Factory Cost ¹ , \$	OEM Cost ^{1,2} , \$
Water	Cathode planar membrane humidifier (for air)	ANL	96	111
Management	Anode planar membrane humidifier (for H ₂)		52	59
	HT automotive tube-fin radiator	Modine	83	95
	LT automotive tube-fin radiator	Modine	13	15
	Air precooler	Bell Intercooler	-	43
Thermal Management	HT/LT radiator fan	McMaster-Carr	-	75
g	HT coolant pump	McMaster-Carr	-	150
	LT/Air precooler coolant pump	Aweco	-	30
	Other (2 Temperature sensors)	-	-	5
	H ₂ blower	Parker Hannifin	219	252
	H ₂ ejectors	-	-	40
Fuel	H ₂ demister	Parker Hannifin	-	61
Management	Solenoid valves	McMaster-Carr	-	46
	Purge valve	DFMA	13	15
	Check valve	DFMA	9	10
	Compressor Expander Motor (CEM)	Honeywell	687	790
	Air demister	Parker Hannifin	-	156
Air Management	Air/H ₂ mixer	McMaster-Carr	-	27
	Flow orifice	McMaster-Carr	-	5
	Air filter	-	-	4
TOTAL		-	1,815	1,991


¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). ² Assumes 15% markup to the automotive OEM for BOP components

Progress 2009 PEMFC System System Cost Breakout

The 2009 PEMFC stack cost is lower than the DOE 2010 target of \$25/kW, while the system cost is higher than the DOE 2010 target of \$45/kW.

PEMFC System Cost ¹ (\$/kW)	2008 OEM Cost ^{1,2}	2009 OEM Cost ^{1,2}
Stack	29.0	22.3
Water Management	3.3	2.1
Thermal Management	2.8	5.2
Fuel Management	3.8	5.3
Air Management	8.9	12.3
Balance of System	3.1	4.0
System Assembly	5.5	4.0
Total	57.0	55.2

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).
 ² Assumes 15% markup to the automotive OEM for BOP components

BOP, balance of system and system assembly costs together represent ~60% of the PEMFC system cost in 2009, compared to ~38% in 2005.

Monte Carlo analysis shows that the high-volume 2009 PEMFC system OEM cost¹ ranges between \$45/kW and \$97/kW ($\pm 2\sigma$), with a mean cost of \$71/kW.

10,000 Trials 9,829 Displayed Cost¹ \$/kW 0.05 500 Mean 71 Median 68 0.04 400 Std. Dev. 13 Probability 0.03 Frequency 200 y 2 Std Dev = 96.6 TIAX 55 Baseline Mean = 70.8 Median = 68.1 Base Case = 55.2 -2 Std Dev = 45.1 0.01 100 0.00 0 60.0 70.0 80.0 90.0 100.0 50.0 \$/kW

2009 PEMFC System OEM Cost¹ (\$/kW)

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Assumes a % markup to automotive OEM for BOP components.

Approach 2010 System Configuration

ANL 2010 PEMFC System Configuration Key features Stack

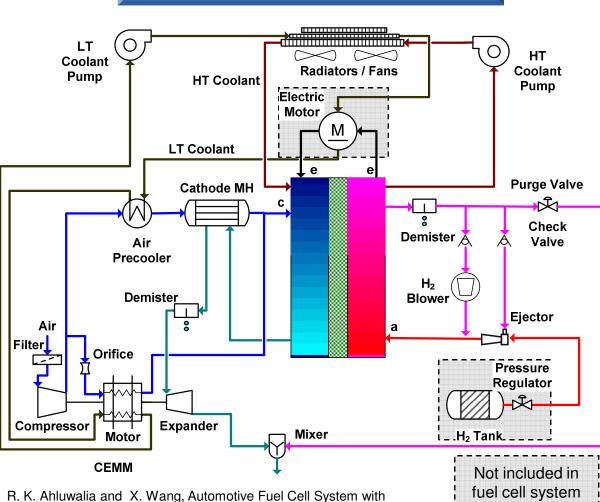
- 3M NSTFC MEA
- \bullet 20 μm reinforced membrane
- 0.05 (a)/0.1 (c) mg/cm² Pt
- Metal bipolar plates
- Non-woven carbon paper GDL

Air Management

- CEM module
- Air-cooled motor/Air-foil bearing

Water Management

Cathode MH with precooler


Thermal Management

Advanced 40-fpi microchannel fins

Fuel Management

• Parallel ejector-pump hybrid

MEA = Membrane Electrode Assembly ANL = Argonne National Laboratory

R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System wi NSTFC Membrane Electrode Assemblies and Low Pt Loading, March 31, 2010

> NSTFC = Nano-Structured Thin Film Catalyst CEM = Compressor Expander Motor MH = Membrane Humidifier

tor ANL = Arg

cost assessment

Preliminary 2010 Results

To be consistent with ANL's stack performance model, we made the following material assumptions for the 2010 cost projection.

Component	Parameter	Selection
Membrane	Material	20 μm 3M PFSA
Membrane	Supported	Mechanically reinforced
	Catalyst	Ternary PtCo _x Mn _y alloy
Electrodes (Cathode and Anode)	Туре	Nano-Structured Thin Film
,	Support	PR-149 Organic whiskers
Gas Diffusion Layer (GDL)	Material	225 μ m non-woven carbon paper ¹
Cas Dilusion Layer (CDL)	Porosity	80%
Bipolar Plate	Type ³	Metal w/ Nitridation surface treatment ²
Seal	Material	Viton®

¹ Ref: Ballard Material Products GDL with PTFE+MPL, AvCarb® GDS3250 @ 50 kPa

² Ref: ORNL Fe-20Cr-4V alloy with nitridation surface treatment

³ We will evaluate Au-Nanoclad SS316 plates as an alternate scenario for metal bipolar plates in 2010

We used a Pt price of \$1,100/tr.oz. for the baseline analysis and captured the impact of variation in Pt price through sensitivity analyses.

PFSA = Perfluorosulfonic acid

PR = Perylene Red

The **preliminary** high-volume cost of the 2010 PEMFC stack for six scenarios^{1, 2, 3} is estimated to range between \$17/kW and \$33/kW.

Key Cost Assumption			2010	Stack Sc	enarios	1, 2, 3	
Rey Cost Assumption	5	S1-1	S1-2	S1-3	S2-1	S2-2	S2-3
System net power	kW _e			80			
Stack gross power ³	kW _e	90	91	92	86	87	88
Cell voltage (rated power) ³	V	0.721	0.650	0.590	0.685	0.622	0.563
Stack gross power density ³	mW/cm ²	573	1059	1411	561	930	1201
Pt loading (total) ³	mg/cm ²	0.15					
Stack Pt content	g/kW _{gross}	0.26	0.14	0.11	0.27	0.16	0.12
System Pt content	g/kW _{net}	0.29	0.16	0.12	0.29	0.18	0.14
Stack efficiency (rated power) ³	% LHV	57	52	47	54	49	45
System efficiency (rated power) ³	% LHV	50	45	40	50	45	40
System voltage (rated power)	V	300					
System active area	m²	15.7 8.6 6.5 15.3 9.4					7.3
Stack cost ⁴	\$/kW _{net}	33.0	20.7	17.4	32.4	22.3	19.0

¹ All scenarios assume a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 μm reinforced PFSA membrane.

² S1: 2.5 atm, 85 ℃; S2: 1.5 atm, 75 ℃

³ Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

⁴ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

We developed specifications for the 2010 PEMFC stack scenarios consistent with the performance predicted by ANL modeling^{1, 2, 3}.

TIAX Assumptions		2010 Stack Scenarios ^{1, 2, 3}					
		S1-1	S1-2	S1-3	S2-1	S2-2	S2-3
Number of stacks per system	#	1				-	
Number of cells per stack	#	417	462	509	438	483	533
Active area to Total area ⁴	%	75%				<u>.</u>	
Active area per cell	cm ²	377 186 128 349 195				137	
Cell pitch	cells/inch (cells/cm)	19.7 (7.8)	19.7 (7.8)	19.7 (7.8)	19.7 (7.8)	19.7 (7.8)	19.7 (7.8)
System voltage (rated power)	V			300	0	-	-

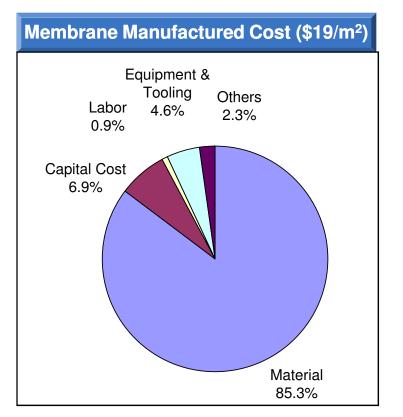
 1 All scenarios assume a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 μm reinforced PFSA membrane.

² S1: 2.5 atm, 85 ℃; S2: 1.5 atm, 75 ℃

³ Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

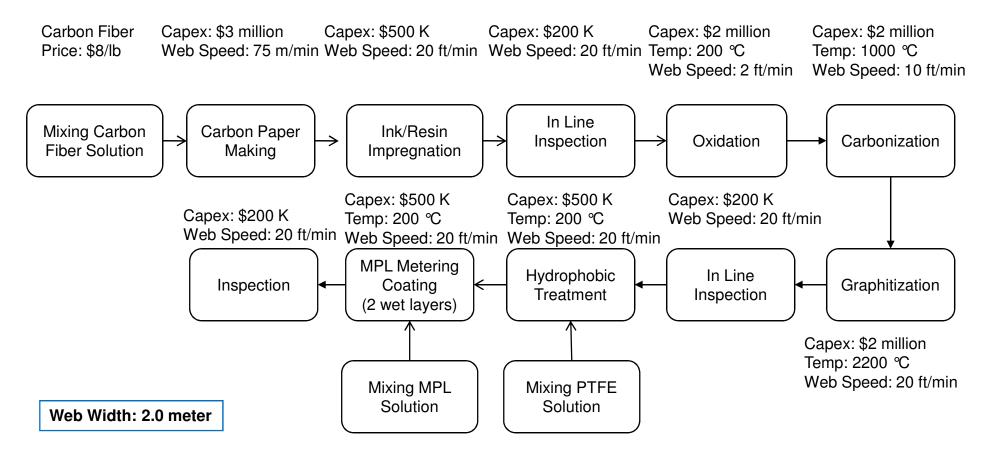
⁴ Active area to Total area ratio reduced from 85% in 2009 to 75% in 2010, based on feedback from OEMs and FCTT

The reinforced 20 μm PFSA membrane is estimated to cost ~\$19/m² on an active area basis, with materials representing ~85% of the cost.


Membrane Manufactured Cost ¹								
Component	Mate	erial	Process					
	(\$/m²)	(\$/kg)	(\$/m²)	(\$/kg)				
Film Handling	6.33	107.64	0.33	5.67				
Coating	9.64	163.83	0.42	7.10				
Drying & Cooling	0.00	0.00	1.87	31.84				
Quality Control	0.00	0.00	0.03	0.57				
Laminating	0.00 0.00		0.05	0.89				
Packaging	0.03	0.43	0.03	0.44				
Subtotal	15.99 2.74 2.74 46							
Total		18.73 (\$/m²)						
		318.42	2 (\$/kg)					

¹ Manufactured cost on an active area basis or per kg of finished membrane basis (accounts for scrap and yield)

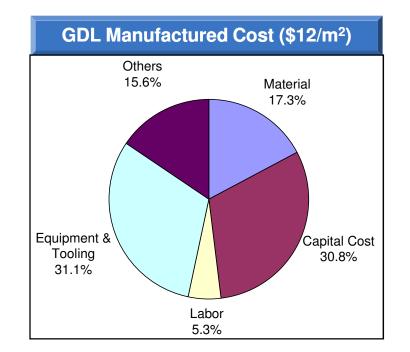
- ² 3M PFSA ionomer cost preliminarily increased by factor of 20% over 2009 Nafion baseline cost of \$80/lb due to higher cost risk for shorter side chain PFSA ionomer: to be verified by industry feedback in 2010
- ³ ePTFE cost preliminarily assumed to be \$5/m²: to be verified by industry feedback in 2010


The preliminary 2010 membrane cost estimate is higher due to increased ionomer² and ePTFE³ costs for the reinforced membrane.

23

In 2010, we costed a non-woven carbon paper GDL with PTFE+MPL.

The 2010 GDL cost is based on discussions with Ballard Material Products on their AvCarb® GDS3250, suitable for automotive applications.



The preliminary cost of the 2010 non-woven carbon paper GDL (for both anode and cathode), is \sim \$12/m², on an active area basis.

Manufactured Cost ¹	GDL (\$/m²)	GDL (Anode + Cathode) (\$/m ²)
Material	1.02	2.05
Capital Cost	1.83	3.66
Labor	0.31	0.63
Tooling	1.85	3.69
Other ²	0.92	1.84
Total	5.94	11.87

¹ Manufactured cost on an active area basis

² Other costs include utilities, maintenance, and building

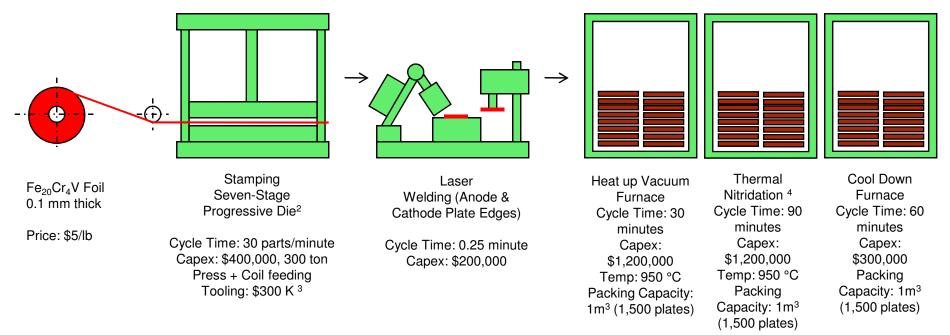
The GDL costing is changed from "buy untreated woven carbon cloth" in 2009 to "fabricate non-woven carbon paper + PTFE + MPL" in 2010.

Using S2-2 as an example scenario, the 2010 MEA and seal together are estimated to cost \sim \$109/m².

Manufactured Cost ¹	MEA (\$/m²)	Frame Seal (\$/m ²)			
Material - Membrane - Electrode - GDL	77.19 - 15.99 - 59.14 - 2.05	5.99			
Capital Cost	9.09	1.75			
Labor	1.15	1.27			
Tooling & Equipment	7.32	1.50			
Other ²	3.51	0.71			
Subtotal	98.26	11.22			
Total	109.49				

MEA & Seal Manufactured Cost (\$109/m²)

¹ Manufactured cost on a per m² of active area basis

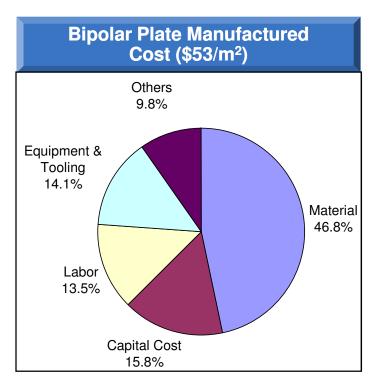

² Other costs include utilities, maintenance, and building

 3 Active area to Total area ratio reduced from 85% in 2009 to 75% in 2010, based on feedback from OEMs and FCTT

The preliminary estimate for the 2010 MEA & seal cost is higher due to increased ionomer and ePTFE costs for the reinforced membrane, the reduction in active area ratio³ from 85% to 75%, reduction in MEA utilization from 100% to 95%, and refinement of GDL costing.

The metal bipolar plate cost is based on discussions with ORNL on their thermal nitriding process¹ for specific alloys, e.g. Fe-20Cr-4V.

- Stamping: The anode side plate and the cathode side plate are stamp pressed by a seven stage progressive die which forms the micro flow channels, punches the main flow channels, bolt holes, and trims the edges.
- Welding: The anode and cathode side plate edges are welded together using laser welding.
- Thermal Nitridation: The bipolar plate is heated for 1.5 hours at 950 °C degree in a vacuum nitridation furnace. It takes 0.5 hour to heat up and 1 hour to cool down.
- 1. Nitrided metallic bipolar plates, M.P. Brady, et al., ORNL, DOE Merit Review presentation, May 2009
- 2. US 20090081520 (Hitachi)
- 3. Discussion with Minster Press Inc., April 2010
- 4. Preferential thermal nitridation to form pin-hole free Cr-nitrides to protect proton exchange membrane fuel cell metallic bipolar plates, M.P. Brady, et al., Scripta Materialia 50 (2004) 1017-1022



The preliminary cost of the nitrided Fe-20Cr-4V metal bipolar plates is estimated to be \sim \$53/m² or \sim \$6/kW in 2010.

	Manufactu	r Plate ured Cost ¹ m ²)	Manufact	ar Plate ured Cost ² kW)
Component	Material Process		Material	Process
Stamping	24.75	10.70	2.91	1.26
Laser Welding	0.00 7.05		0.00	0.83
Nitridation	0.00 10.40		0.00	1.22
Subtotal	24.75 28.14		2.91	3.31
Total	52.89		6.	22

¹ Manufactured cost on an active area basis

² Manufactured cost on a kW_{net} basis

The base metal foil thickness¹ is 0.1 mm and the overall bipolar plate thickness is 0.9 mm. We will also evaluate Au-Nanoclad SS316 bipolar plates in 2010.

Preliminary 2010 stack (S2-2) manufactured costs on an active area basis are higher than the 2009 stack costs, due to the reduction in active area ratio from 85% (in 2009) to 75% (in 2010).

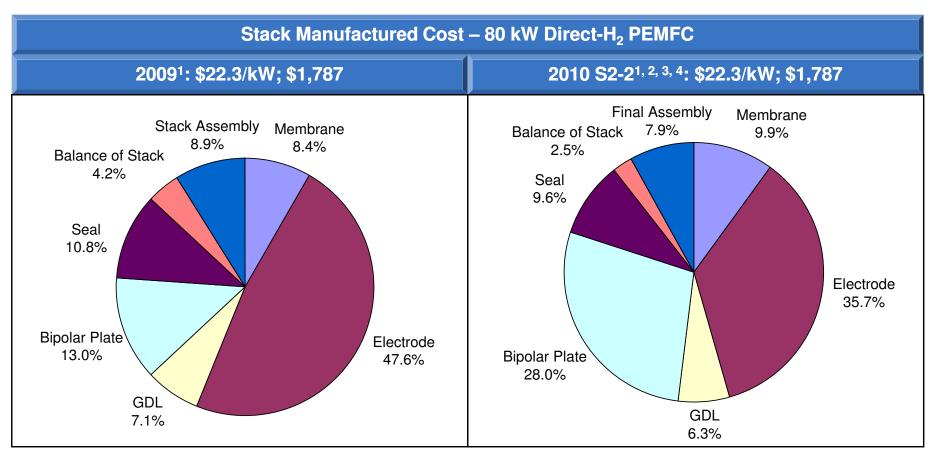
Stack Manufactured Cost ¹ , \$/m ²	2009	2010 S2-2 ^{2, 3, 4}	۵%	Comments
Membrane	11	19	+70%	3M PFSA ionomer (1.2*\$80/lb) & ePTFE (\$5/m²) included in 2010
Electrodes	65	68	+4%	MEA utilization rate decreased from
GDL	10	12	+8%	100% in 2009 to 95% in 2010
Seals	15	18	+22%	Active area decreased from 13.1 m ² in 2009 to 9.4 m ² in 2010
Bipolar plates	18	53	+194%	Nitrided metallic plate in 2010
Balance of Stack (Stack manifold, tie bolts, end plates, current collectors, electrical insulators)	6	5	-20%	1 stack per system in 2010 vs. 2 stacks per system in 2009
Stack Assembly ^{5, 6}	12	15	+25%	Active area decreased from 13.1 m ² in 2009 to 9.4 m ² in 2010
Total Stack ⁷	136	189	+39%	

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

³ Assumes a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 µm reinforced PFSA membrane.

 4 S2: stack inlet pressure @ rated power = 1.5 atm, stack temperature = 75 $^\circ\!C$


⁵ Stack Assembly cost includes QC but not Stack Conditioning; QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop

⁶ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

⁷ Results may not appear to calculate due to rounding of the component cost results.

The preliminary cost estimate for the 2010 stack (S2-2) is \sim \$22/kW, which is similar to the 2009 stack cost.

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

³ Assumes a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 µm reinforced PFSA membrane.

 4 S2: stack inlet pressure @ rated power = 1.5 atm, stack temperature = 75 °C

Preliminary 2010 stack (S2-2) manufactured costs on a net kW basis are similar to the 2009 stack costs.

Stack Manufactured Cost ¹ , \$/kW	2009	2010 S2-2 ^{2, 3, 4}	۵%	Comments	2010 DOE Target
Membrane	1.9	2.2	+18%	3M PFSA ionomer (1.2*\$80/lb) & ePTFE (\$5/m²) included in 2010	
Electrodes	10.6	8.0	-25%	Power density is higher for same	
GDL	1.6	1.4	-12%	Pt loading in 2010^2 ;	10
Seals	2.4	2.1	-11%	2010: 930 mW/cm², 2009: 701 mW/cm²	
Bipolar plates	2.9	6.2	+115%	Nitrided metallic plate in 2010	5
Balance of Stack (Stack manifold, tie bolts, end plates, current collectors, electrical insulators)	0.9	0.6	-39%	Power density is higher for same Pt loading in 2010 ² ; 2010: 930 mW/cm ² , 2009: 701 mW/cm ²	
Stack Assembly ^{5, 6}	1.8	1.8	-11%		
Total Stack ⁷	22.3	22.3	0%		25

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

³ Assumes a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 µm reinforced PFSA membrane.

 4 S2: stack inlet pressure @ rated power = 1.5 atm, stack temperature = 75 $^\circ\!C$

⁵ Stack Assembly cost includes QC but not Stack Conditioning; QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop

⁶ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

⁷ Results may not appear to calculate due to rounding of the component cost results.

The preliminary high-volume OEM cost of the 2010 PEMFC system for six scenarios^{1, 2, 3} is estimated to range between \$49/kW and \$65/kW.

PEMFC System Cost ¹	2009 OEM	2010 Stack Scenarios ^{1, 2, 3}					
(\$/̈́kW)	Cost ^{4, 5}	S1-1	S1-2	S1-3	S2-1	S2-2	S2-3
Stack ⁴	22.3	33.0	20.7	17.4	32.4	22.3	19.0
Water Management ^{5, 6, 7}	2.1	1.4	1.4	1.4	1.4	1.4	1.4
Thermal Management ^{5, 7}	5.2	5.2	5.2	5.2	5.2	5.2	5.2
Fuel Management ^{5, 7}	5.3	5.3	5.3	5.3	5.3	5.3	5.3
Air Management ^{5, 7, 8}	12.3	12.2	12.4	12.9	9.9	10.4	10.6
Balance of System ^{5, 7}	4.0	4.0	4.0	4.0	4.0	4.0	4.0
System Assembly	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Total System ^{4, 5, 6, 7}	52.4	65.0	52.9	50.0	62.2	52.4	49.4

 1 All scenarios assume a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 μm reinforced PFSA membrane.

² S1: 2.5 atm, 85 ℃; S2: 1.5 atm, 75 ℃

³ Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

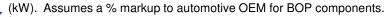
⁴ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

⁵ Assumes 15% markup to the automotive OEM for BOP components

⁶ Water Management in 2010 preliminarily assumes cathode planar membrane humidifier and no anode humidifier

⁷ Using 2009 cost numbers for BOP subsystems' preliminary cost; all BOP costs pending ANL input, are planned to be updated in 2010

⁸ CEM motor controller cost varies based on preliminary modeling by ANL, of CEM parasitic power, for different scenarios


Summary

The key conclusions, accomplishments and next steps for our project are summarized below.

- Key conclusions and accomplishments:
 - The 2009 PEMFC stack cost¹ was estimated to range between \$19/kW and \$40/kW over six different scenarios.
 - The PEMFC stack and system costs^{1, 2} were estimated to be \$22/kW and \$55/kW respectively, for the 2009 baseline scenario.
 - BOP, balance-of-system and system assembly costs together represented ~60% of the projected PEMFC system cost, for the 2009 baseline scenario.
 - Monte Carlo analysis shows that the 2009 PEMFC system OEM cost^{1, 2} ranges between \$45/kW and \$97/kW ($\pm 2\sigma$), with a mean cost of \$71/kW.
 - We participated in an independent peer-review of our cost analysis, and submitted a comprehensive report to DOE on our 2008 PEMFC cost analysis
 - Preliminary estimates for the manufactured cost¹ of the 2010 PEMFC stack, ranged between \$17/kW and \$33/kW over six different scenarios.
 - Preliminary estimates for the OEM cost^{1, 2} of the 2010 PEMFC system, ranged between \$49/kW and \$65/kW over six different scenarios.
- Next steps:
 - Finalize baseline scenario for 2010 PEMFC system, and develop BOP cost estimates
 - Finalize reinforced membrane, non-woven GDL and metal bipolar plate (thermal nitrided and Au-Nanoclad) cost estimates for baseline scenario for 2010 PEMFC stack
 - Develop bottom-up cost projection for stack conditioning³
 - Perform single-variable and Monte Carlo sensitivity analyses on stack and system costs

¹ High-volume manufactured cost based on a 80 kW net power PEMFC net power system.

² High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power

³ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

Acknowledgement

We would like to thank the DOE for supporting this project over the past five years, and acknowledge valuable discussions with OEMs, FCTT, developers, national labs, and equipment manufacturers.

- Key discussions this year to date include:
 - Ballard Material Products
 - Ford Motor Co.
 - Oak Ridge National Laboratory
 - Argonne National Laboratory
 - Several equipment manufacturers
 - Independent Peer Review Panel

Supplemental Slides

Reviewers' Comments 2009 DOE AMR

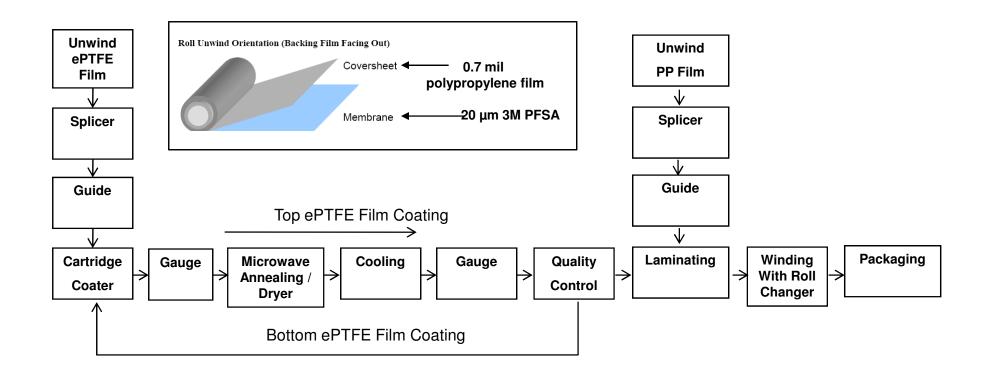
Responses to Reviewers' Comments from 2009 DOE AMR

- "Trade-offs between operating conditions, system/component performance and components cost sensitivities should be studied."
 - Six scenarios (with varying cell voltage, Pt loading, power density, system efficiency) were costed for the 2009 PEMFC system, and we have presented preliminary costs for six scenarios (with varying pressure, cell voltage, power density, system efficiency) for the *updated* 2010 PEMFC system configuration. The underlying stack architecture and system configuration remain the same, while stack and BOP component performance and specifications vary.
- "Not enough effort was devoted to non-stack/system component costs."
 - At the time of the 2009 DOE AMR, we were only a couple months into our Option Year 2. We have presented detailed BOP cost updates for the ANL 2009 PEMFC system configuration (esp. see Supplemental Slides for BOM and process flow details).
- "The cost of membrane materials may be underestimated since high volume (for chemical industry) will not be achieved at 500,000 vehicles/year."
 - We have preliminarily updated the cost of the 3M PFSA ionomer by a factor of 20% over 2009 Nafion baseline cost of \$80/lb due to higher cost risk for shorter side chain PFSA ionomer: to be verified by industry feedback in 2010.
- "Project team needs to clarify the role relative to DTI."
 - The DTI and TIAX cost studies are two totally independent/objective evaluations, with certain key
 parameters/assumptions (e.g. Pt price, vertical integration of stack manufacturing, BOP markup) provided
 by DOE for sake of consistency and ease of comparison.
- "The cost of \$16/m² for the membrane seems a bit too high. Compare to cost projections from GM (Mathias et al., Fall 2005)."
 - The manufactured cost of the 2009 membrane (20 µm thick, 3M PFSA) was estimated to be \$11/m² @ production volume of ~6.6 million m²/year, which is similar to the *extrapolated* value of ~\$8-9/m² at that production volume in the GM projection from 2005 (25 µm thick, Nafion[®] PFSA membrane).
 Note: Preliminary 2010 update is for a mechanically reinforced, 20 µm thick, 3M PFSA membrane.

We coordinated with DOE, ANL, developers, and stakeholders so far this year, with additional meetings to follow.

Audience/ Reviewer	Date	Location
Fuel Cell Tech Team Mtg.	May 08	Detroit MI
Several Work-in-Progress Mtgs. with DOE and ANL	June – Sep 08	Telecon
DOE Annual Merit Review	June 08	Arlington VA
DOE HFCIT Review	Sep 08	Washington DC
Fuel Cell Tech Team Review	Sep 08	Telecon
Several Work-in-Progress Mtgs. with the Independent Peer Review Panel	Dec 08 – Mar 09	Telecon
Several Work-in-Progress Mtgs. with DOE and ANL	Feb 09 – Sep 09	Telecon
DOE Annual Merit Review	May 09	Arlington VA
Fuel Cell Tech Team Review	Aug 09	Telecon
Several Telecons & Mtgs. with Ford, Ballard Material Products, ORNL, ANL, and others	Feb 10 – present	Telecon
DOE Annual Merit Review	June 10	Washington DC

ANL modeled a 3M PFSA membrane, with a Gore-Select[®] type of support, and total thickness of 20 microns.


	ePTFE	3M PFSA ionomer Supported Membrane
Thickness (µm)	20	20
Porosity (%)	95%	-
Bulk Density (g/cm ³)	0.098	1.97

- Impregnation of ePTFE layer with liquid ionomer solution is not suitable for a high-volume manufacturing process because both the ePTFE and ionomer film are hydrophobic. Impregnation times can be unacceptably long and repeated impregnations are needed.
 - US 6156451 (Dupont)
 - S. Ahn, Y. Lee, H. Ha, S. Hong, I. Oh, Properties of the reinforced composite membranes formed by melt-soluble ion-conducting polymer resins for PEMFCs, Electrochim. Acta 50 (2004) 571–575.
 - T.Yu,H. Lin, K. Shen, L. Huang,Y. Chang, G. Jung, J. Huang, Nafion/PTFE composite membranes for fuel cell applications, J. Polym. Res. 11 (2004)
- A double-side dispersion coating process is used in our analysis
 - US 2008/0269409 (Dupont)

We assumed a double-side dispersion coating process for membrane fabrication.

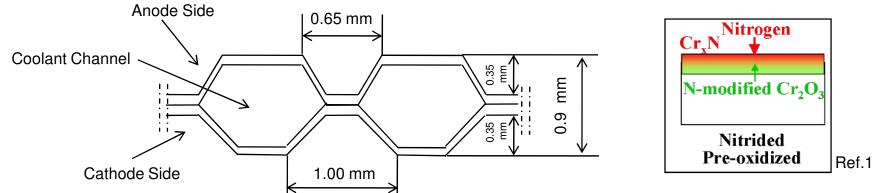
We used US 2008/0269409 to adapt our existing 3M PFSA membrane fabrication process to an ePTFE-supported membrane process.

We assumed a double-side dispersion coating process for membrane fabrication.

In 2010, we costed a non-woven carbon paper GDL with PTFE+MPL.

Bill of Materials	Process
2009 GDL : Woven carbon cloth MPL: 47% PTFE, 53% Carbon black	2009 GDL : Purchase untreated woven carbon cloth Coat hydrophobic PTFE and MPL together
2010 GDL: We developed a separate BOM for bare GDL+ PTFE+MPL GDL: non-woven carbon fiber paper, 10 wt% PTFE MPL: 50% PTFE, 50% Carbon black	2010 GDL : Fabricate non-woven carbon paper Hydrophobic treatment MPL coating

For Reviewers Only


Preliminary 2010 Results

Material	Pressure (kPa)	Bare GDL	GDL with PTFE Treatment	GDL with PTFE Treatment + MPL
Thickness (µm)	50	185		225
Porosity (%)	250	90%	88%	80%
Areal Weight (g/m ²)	40		44	75
Materials		Carbon Fiber loading: 15 g/m ² Ink/Resin loading: 25 g/m ²	10 wt% PTFE treatment PTFE loading: 4 g/m ²	PTFE loading: 15 g/m ² Carbon black loading: 16 g/m ²
Comments		AvCarb® EP40 Assume that process starts with PAN-precursor commercial-grade carbon fiber Carbon fiber price: \$8/lb	PTFE Cost: \$9.41/lb	AvCarb® GDS3250 Carbon Black Cost: \$1.52/lb

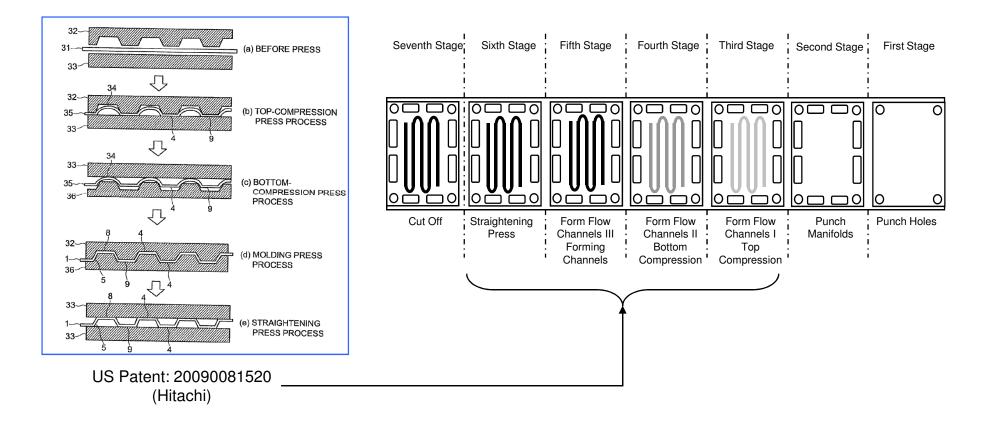
In 2009 and previous years, we combined the GDL hydrophobic coating and MPL coating together and treated them as a single process step.

Fe-20Cr-4V was picked as the base metal alloy, with nitridation surface treatment.

Parameter	Specifications		
Bipolar Plate Area (cm ²)	260		
Base Material Thickness ³ (mm)	0.1		
Base Material	Fe-20Cr-4V		
Base Material Surface Treatment	Pre-oxidation + Nitridation		
# of Tiles in a Bipolar Plate	2		
Cooling Channels?	Yes		
Joint Method	Laser Welding Edge		

Parameter	Dimensions
Anode Side Channel Width ² (mm)	0.65
Anode Side Channel Depth ² (mm)	0.35
Anode Side Flow Channel Area as % of Active Area	50%
Cathode Side Channel Width ² (mm)	1.00
Cathode Side Channel Depth ² (mm)	0.35
Total Thickness (mm)	1.10
Cathode Side Flow Channel Area as % of Active Area	75%
Overall Active Area	75%
Cavity as % of Active Area	73%
Cavity as % of non Active Area	87%

The base metal foil thickness is 0.1 mm and the overall bipolar plate thickness is 0.9 mm.

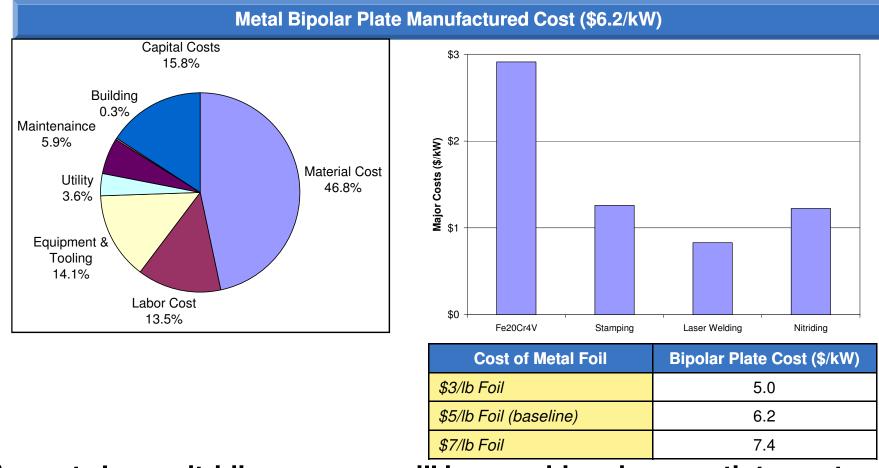


1. Nitrided metallic bipolar plates, M.P. Brady, et al., ORNL, DOE Merit Review presentation, May 2009

GM patents: US 20070082252; US 7,291,414; US 20090186253 2.

3. Discussion with ORNL, April 2010

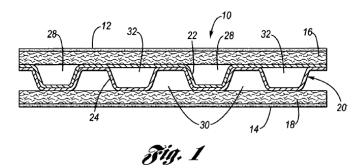
A seven-stage progressive die is assumed, in order to prevent cracks during the thin metal forming process. The tooling cost is ~\$300,000¹.

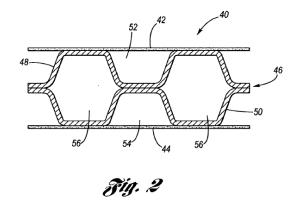


A 300 ton press with a coil feed line are assumed, with a production rate of 30 parts per minute¹.

((TIAX

1. Discussion with Minster Press Inc., April 2010


The preliminary cost of the 2010 nitrided metal bipolar plates is estimated to be ~\$6/kW. The substrate alloy, stamping process, and nitriding process are the major cost drivers.



A quartz lamp nitriding process will be considered as a path to cost reduction, due to much reduced cycle time of ~10 minutes.

US 20070082252; US 7,291,414 (GM)

TABLE I	
Nested ¹	Non

.2

. .

Parameter	Nested	Non-Nested-	Nested
Cathode channel depth (mm) Anode channel depth (mm)	0.34	0.35	0,34
Feed channel depth (mm) Repeat distance (mm)	0.17	1.29	0.17
Anode ΔP (kPa) Cathode ΔP (kPa)	13 30	13	30 85
Coolant AP (kPa)	57	22	106
Power density (kW/l) Thermal mass (kJ/K)	6.0 20	4.8 27	6.3 19

¹Nested in active feed region, non-nested in inactive feed regions, and with no diffusion media in the inactive feed regions.

²Non-nested, and no inactive feed regions.

³Nested in active feed region, and non-nested in inactive feed regions, with diffusion media in the inactive feed regions.

[0038] Table I below provides a comparison of various parameters discussed above for a nested plate design according to the present invention having no diffusion media in the inactive feed regions, a non-nested plate design, and a nested plate design having diffusion media in the inactive feed regions. This data is from a fuel cell stack including a 360 cm² active area, 200 cells, 66 kW output power, 1.5 A/cm² current density and a low pressure. The nested designs are smaller than the non-nested designs, have a higher power density (higher kW/liter), and have an even greater reduction in thermal mass from 27 to 19-20 kJ/kilogram due to the reduced coolant volume. The nested plate design having diffusion media in the inactive feed regions produces very shallow feed channels in the inactive feed regions and leads to an unacceptably high pressure drop (85 kPa vs. 30 kPa on the cathode side).

US 20090186253 (GM): 0.55 mm wide, 0.29 mm deep channels

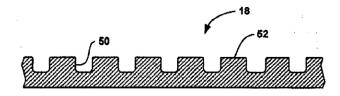
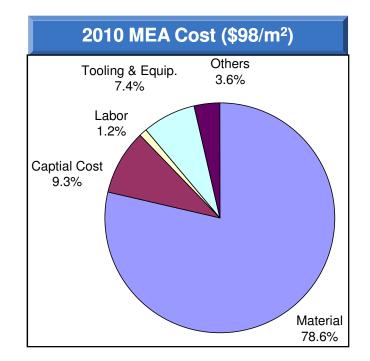


FIGURE 2 PRIOR ART

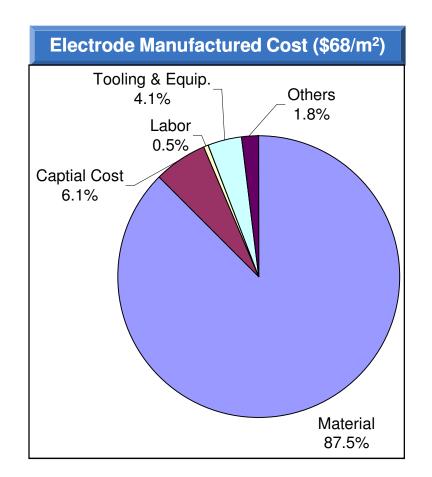

[0012] Current fuel cell stack designs typically focus on achieving high volumetric power density by reducing the active area of the fuel cell and increasing the current density. The key enabling design features of the bipolar plate **18** for this purpose include elimination of serpentine flow channels on the cathode side **12** to avoid accumulation of liquid water in the U-bends of the channels **50**, and the reduction of the channel-to-channel pitch to maximize the utilization of the catalyst layer **22** under the lands **52** in the absence of a significant channel-to-channel pressure gradient. In this design, the cathode side bipolar plate **18** includes 108 nearly rectangular channels **50** with a width of 0.55 mm and a depth of 0.29 mm and a land width of 0.65 mm. These flow field

plates provide operation above 600 mV at 1.5 A/cm². One example of such a flow field plate is disclosed in U.S. patent application Ser. No. 10/669,479, titled Flow Field Plate Arrangement For A Fuel Cell, filed Sep. 24, 2003.

Using S2-2 as an example scenario, we determined the cost breakout for the MEA; materials represent ~79% of the $98/m^2$ MEA cost in 2010.

Manufactured Cost	2009 MEA ¹ (\$/m ²)	2010 MEA ¹ (\$/m ²)	
<i>Material - Membrane - Electrode - GDL</i>	76.70 - 9.77 - 58.69 - 8.23	77.19 - 15.99 - 59.14 - 2.05	
Capital Cost	6.18	9.09	
Labor	3.85	1.15	
Tooling & Equipment	4.21	7.32	
Other ²	2.03	3.51	
Total	93	98	

The preliminary estimate for the 2010 MEA cost is higher due to increased ionomer and ePTFE costs for the reinforced membrane, the reduction in active area ratio³ from 85% to 75%, reduction in MEA utilization from 100% to 95%, and refinement of GDL costing.



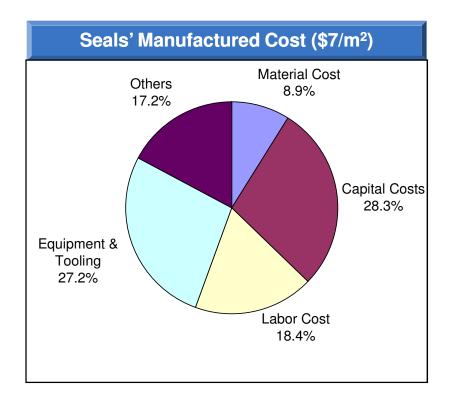
Platinum price dominates the preliminary 2010 electrode cost estimate of \$68/m². We have assumed Pt price to be \$1,100/tr.oz. or \$35.4/g.

Manufactured Cost	Anode ¹ (\$/m ²)	Cathode ¹ (\$/m ²)	Total ¹ (\$/m ²)
Material	20.25	38.89	59.14
Capital Cost	1.58	2.56	4.14
Labor	0.16	0.19	0.35
Tooling	1.12	1.65	2.77
Other ²	0.50	0.72	1.22
Total	23.61	44.02	67.63

 1 m² of active area

² Other costs include utilities, maintenance, and building

Platinum at \$1,100/tr.oz. is close to the average price (\$1,096/tr.oz.) over the last year.



The preliminary cost of the 2010 seals is estimated to be \sim \$7/m².

Manufactured Cost ¹	Seals (\$/m²)
Material	0.63
Capital Cost	1.99
Labor	1.30
Tooling	1.92
Other ²	1.22
Total	7.05

¹ Manufactured cost on an active area basis

² Other costs include utilities, maintenance, and building

Transfer molding is used to fabricate the seals between the MEA and bipolar/cooling plate. The seal material is Viton[®] which costs ~\$20/lb.

Preliminary results of 2010 PEM fuel cell stack (S2-2) cost breakdown.

Active Area Basis ¹										
	Stack Costs	Mtl Cost (\$/m²)	Process Cost (\$/m²)	Total Cost (\$/m²)	Unit Cell Weight/Area (g/cm²)	Total Fuel Cell Module Weight	Total Fuel Cell Module Mtl Cost (\$)	Total Fuel Cell Module Process Cost (\$)	Total Fuel Cell Module Cost (\$)	Total Fuel Cell Module Cost (\$/kW)
	Anode GDL	\$1.0	\$4.9	\$5.9	\$0.0	\$1.8	\$9.7	\$46.3	\$56.0	\$0.7
	Anode Active Layer	\$20.2	\$3.4	\$23.6	\$0.0	\$0.0	\$190.6	\$31.6	\$222.2	\$2.8
MEA	Electrolyte	\$16.0	\$2.7	\$18.7	\$0.0	\$0.3	\$150.6	\$25.8	\$176.3	\$2.2
	Cathode Active Layer	\$38.9	\$5.1	\$44.0	\$0.0	\$0.0	\$366.1	\$48.3	\$414.4	\$5.2
	Cathode GDL	\$1.0	\$4.9	\$5.9	\$0.0	\$1.8	\$9.7	\$46.3	\$56.0	\$0.7
MEA Total		\$77.2	\$21.1	\$98.3	0.04	4	\$727	\$198	\$925	\$12
Bi	polar Coolant Plate	\$24.8	\$28.1	\$52.9	\$0.1	\$20.1	\$233.0	\$264.9	\$497.9	\$6.2
Bi	polar Interconnect ²	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
	Gaskets					\$1.2	\$59.3	\$112.6	\$171.9	\$2.1
	End Plates					\$0.7	\$2.9	\$1.2	\$4.1	\$0.1
	Current Collector					\$0.4	\$1.0	\$0.5	\$1.6	\$0.0
	Insulator					\$0.3	\$6.3	\$0.4	\$6.8	\$0.1
	Outer Wrap					\$1.8	\$5.5	\$2.4	\$7.9	\$0.1
	Tie Bolts					\$2.9	\$23.3	\$1.8	\$25.1	\$0.3
	Final Assy							\$141.3	\$141.3	\$1.8
	Total Unit Cell	\$101.9	\$49.2	\$151.2	0.11	31	\$1,058	\$724	\$1,781	\$22.3

¹ High-volume manufactured cost on an active area basis, for a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Based on stack and system modeling results by ANL for 2010 PEMFC system: R. K. Ahluwalia and X. Wang, March 31, 2010.

 3 Assumes a Pt cost of \$1,100/tr.oz., NSTFC-based MEA, and 20 μm reinforced PFSA membrane.

⁴ S2: stack inlet pressure @ rated power = 1.5 atm, stack temperature = 75 °C

⁵ Stack Assembly cost includes QC but not Stack Conditioning ; QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop

⁶ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

Stack performance assumptions were updated by ANL based on their modeling of an NSTFC-based MEA and a 20 μm PFSA membrane.

Key Stack Performance	Assumptions	2005 ¹	2007 ^{2,3}	2008 ⁴	2009 ⁵
Net power	kW _e	80	80	80	80
Gross power	kW _e	89.5	86.4	86.9	92.1
Gross power density	mW/cm ²	600	753	716	701
Cell voltage (rated power)	V	0.65	0.68	0.685	0.693
Pt loading (total)	mg/cm ²	0.75	0.30	0.25	0.15
Membrane thickness	μm	50	30	30	20
Stack temperature	°C	80	90	90	90
Pressure (rated power)	atm	2.5	2.5	2.5	2.5
Stack eff. (rated power)	% LHV	52	54	54	55

¹ E.J. Carlson et al., Cost Analysis of PEM Fuel Cell Systems for Transportation, NREL/SR-560-39104, Sep 30, 2005

² R.K. Ahluwalia and X. Wang, Reference Fuel Cell System Configurations for 2007: Interim Results, ANL, Feb. 6, 2007

³ R.K. Ahluwalia, X. Wang and R. Kumar, Fuel Cell Systems Analysis, DOE Hydrogen Program Review, May 15-18, 2007

⁴ R. K. Ahluwalia, X. Wang and R. Kumar, Fuel Cell Systems Analysis, 2008 USDOE Hydrogen Program Review, Arlington, VA, June 9-13, 2008

⁵ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009

Key assumptions in 2009 represent ANL's inclusion of new performance data from 3M at the cell/short-stack level, and from Honeywell on the CEM parasitic power.

2009 stack costs on a per kW basis are lower than the 2008 stack costs primarily due to the lower Pt loading, thinner membrane, and reduced stack assembly time.

Stack Manufactured Cost ¹ , \$/kW	2005	2007	2008	2009	2010 DOE Target
Membrane	4	2	2	2	
Electrodes	52	18	16	11	10
GDL	3	2	2	2	10
Seals	1	2	2	2	
Bipolar plates	3	3	3	3	5
Balance of Stack (Stack manifold, tie bolts, end plates, current collectors, electrical insulators)	1	1	1	1	
Stack Assembly ²	2	3	3	2	
Total ³	67	31	29	22	25

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Stack Assembly cost in 2005 includes neither QC nor Stack Conditioning, while in 2007-2009, it includes QC but not Stack Conditioning.

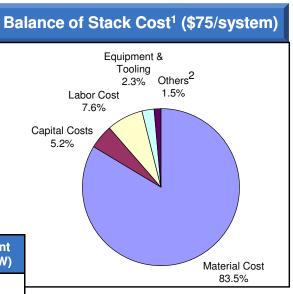
³ Results may not appear to calculate due to rounding of the component cost results.

2009 stack costs on an active area basis are lower than the 2008 stack costs primarily due to the lower Pt loading, thinner membrane, and reduced stack assembly time.

Stack Manufactured Cost ¹ , \$/m ²	2005	2007	2008	2009
Membrane	23	16	16	11
Electrodes	279	120	102	65
GDL	18	13	13	10
Seals	6	13	13	15
Bipolar plates	17	18	18	18
Balance of Stack (Stack manifold, tie bolts, end plates, current collectors, electrical insulators)	6	6	6	6
Stack Assembly ²	10	23	23	12
Total ³	361	210	191	136

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Stack Assembly cost in 2005 includes neither QC nor Stack Conditioning, while in 2007-2009, it includes QC but not Stack Conditioning.

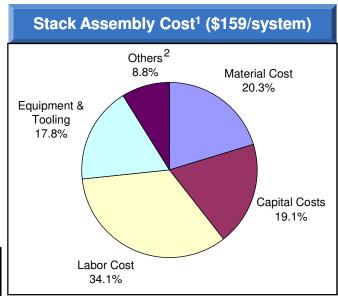

³ Results may not appear to calculate due to rounding of the component cost results.

Material costs represent ~84% of the Balance of Stack cost because the components have relatively simple, mature manufacturing processes.

Balance of Stack Cost ¹ (\$)						
Component	Cost (\$)					
Current Collectors	3.7					
Insulators	18.2					
End Plates	10.2					
Tie Bolts	21.4					
Stack Manifold / Outer Wrap	21.2					
Total	74.7					

Process Name	Capex Per Station (\$)	# of Stations	Labor Per Station	Cycle Time (sec/unit)	Required Space (m ²)	Equipment Power (kW)
Die Cast Endplate	300,000	1	1	10	40	10
Die Cut Endplate Insulator	40,000	2	1	5	10	5
Cut T- Bolt	20,000	3	0.5	30	20	5
Wrap Manufacturing - Shear Stock	40,000	5	1	0.5	10	3
Wrap Manufacturing - Turret Punch	250,000	1	0.5	28	40	5
Wrap Manufacturing - Bend	105,000	1	1	65	160	5

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

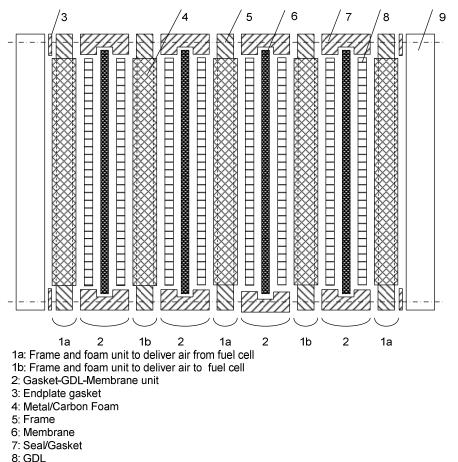

² Other costs include utilities, maintenance, and building

The assembly of the stack repeat units is assumed to be robotic, while the assembly of the balance of stack components is a manual process.

Stack Assembly Cost ¹ (\$)						
Component/Process	Cost (\$)					
Repeat parts (robotic)	131.3					
Non-repeat parts (manual)	5.2					
Stack Quality Control ³	22.4					
Total	158.9					

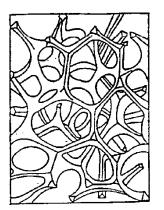
Process Name	Capex Per Station (\$)	# of Stations	Labor Per Station	Cycle Time (sec/unit)	Required Space (m²)	Equipment Power (kW)
Stack Assembly	400,000	83	0.2	1,135	20	10
Balance of Stack Assembly	20,000	44	0.2	600	20	5
Stack QC ³	300,000	66	0.2	900	20	5

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).


 ² Other costs include utilities, maintenance, and building
 ³ Stack QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop

⁴ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

We estimate that 2 stacks and the BOS are assembled in ~1 hour. Stack assembly cost includes stack QC³, but not stack conditioning / burn-in costs⁴.


We developed bottom-up manufacturing costs for the planar membrane humidifier based on ANL specifications¹ and other patents.

- 9: Endplate
- ¹ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009

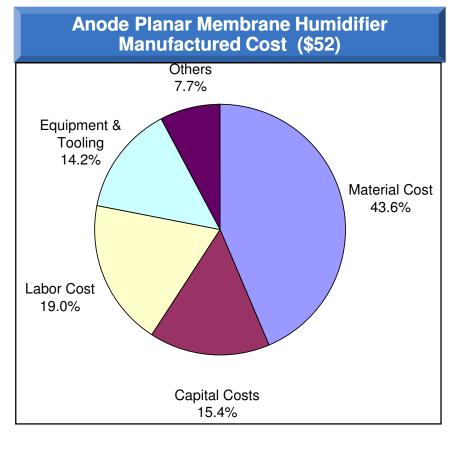
- Referenced Patents
 - U.S. Patent 6,737,183 (Nuvera)
 - U.S. Patent 6,835,477 (Nuvera)
 - U.S. Patent 6,864,005 (Ballard)
 - U.S. Patent 7,078,117 (Ballard)

Nickel foam (U.S. Patent 6,835,477)

We developed bottom-up manufacturing costs for the planar membrane humidifier based on ANL specifications¹ and other patents.

¹ R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009

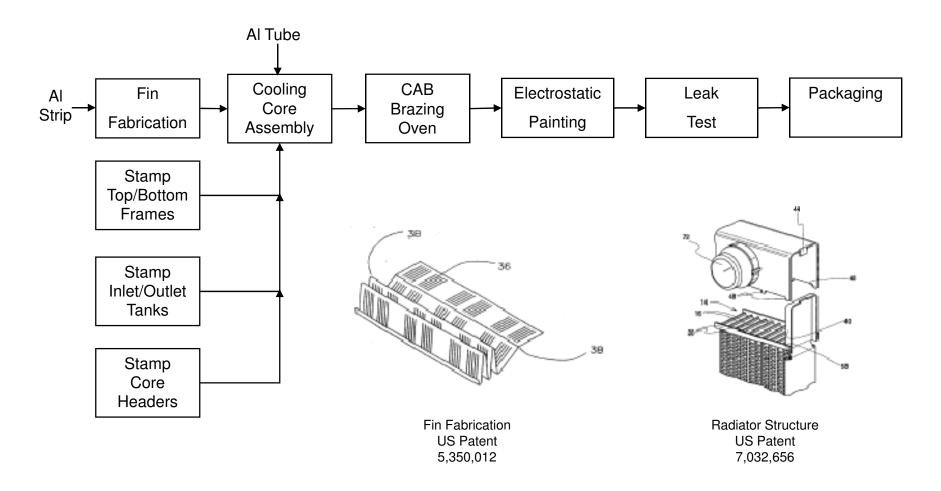
Bill of Materials for the cathode/anode planar membrane humidifiers


Ca	Cathode Planar Membrane Humidifier								
Component	#	Material	Size (mm)						
Membrane	42	Nafion®	400 (length), 140 (width), 0.03 (thickness)						
GDL	84	Woven carbon fiber	300 (length), 120 (width), 0.1 (thickness)						
Nickel Foam	43	Nickel foam	300 (length), 120 (width), 1.5 (thickness)						
Frame	43	HDPE	400 (length), 140 (width), 1.5 (thickness)						
Membrane Gasket	42	Nitrile rubber	400 (length), 140 (width), 0.22 (thickness)						
End Plate	2	Al	400 (length), 140 (width), 20 (thickness)						
End Plate Gasket	2	Nitrile rubber	400 (length), 140 (width), 0.22 (thickness)						
Bolt	4	Misc.	101 (length), 10 (OD)						
Washer	4	Misc.	-						
Nut	4	Misc.	-						

Anode Planar Membrane Humidifier									
Component	#	Material	Size (mm)						
Membrane	22	Nafion®	350 (length), 120 (width), 0.03 (Thickness)						
GDL	44	Woven carbon fiber	250 (length), 100 (width), 0.1 (thickness)						
Nickel Foam	23	Nickel foam	250 (length), 100 (width), 1.5 (thickness)						
Frame	23	HDPE	350 (length), 120 (width), 1.5 (thickness)						
Membrane Gasket	42	Nitrile rubber	350 (length), 120 (width), 0.22 (thickness)						
End Plate	2	Al	350 (length), 120 (width), 20 (thickness)						
End Plate Gasket	2	Nitrile rubber	350 (length), 120 (width), 0.22 (thickness)						
Bolt	4	Misc.	68 (length), 10 (OD)						
Washer	4	Misc.	-						
Nut	4	Misc.	-						

Progress 2009 PEMFC System Anode Planar MH Cost

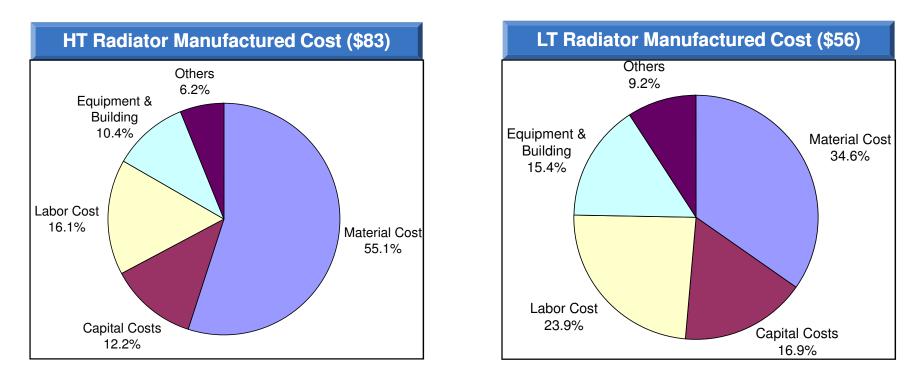
Material costs represent approximately 44% of the anode planar membrane humidifier manufactured cost of \$52.



Anode Planar Membrar	ne Humid	ifier Manufactu	red Cost (\$)
Process	#	Material	Process
Die Cut GDL	1	0.91	1.05
Die Cut Membrane	2	3.68	1.12
Hot Press Lamination	3	0.00	3.18
Injection Molding Frame Seal	4	0.00	2.20
Laser Cut Nickel Foam	5	5.74	9.09
Injection Molding Foam Frame	6	2.35	2.47
Injection Molding End Plate Gasket	7	0.09	0.45
Die Casting End Plate	8	7.11	1.26
Component Assembly	9	0.00	3.62
QC & Testing	10	0.00	3.56
Packaging	11	0.00	1.06
Fastener Cost	-	2.63	0.00
Total	-	5	2

The high-volume manufactured cost of the cathode planar membrane humidifier is estimated to be \$96.

We developed a manufacturing process flow chart for the HT and LT radiators based on Modine patents and in-house experience.

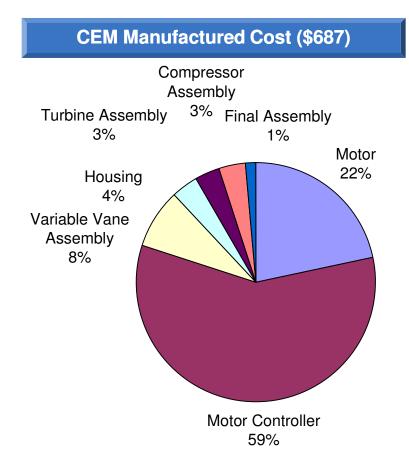


We used a Modine all-aluminum automobile radiator structure as our baseline for developing a Bill of Materials for the HT/LT radiators.

	High-T	Radiator	Low-Temperature (LT) Radiator						
#	Components	#	Mti.	Size (L x W x H) (mm)	#	Components	#	Mtl.	Size (L x W x H) (mm)
1	Serpentine Louvered Fin	39208	AI 3003	59.70 x 4.44 x 0.10	1	Serpentine Louvered Fin	38381	AI 3003	17.00 x 4.04 x 0.08
2	Core Tube	61	AI 3003	700.00 x 59.70 x 2.80	2	Core Tube	64	AI 3003	700.00 x 17.00 x 2.80
3	Inlet Header, Solder Well Type	1	AI 3003	546.00 x 99.70 x 1.80	3	Inlet Header, Solder Well Type	1	AI 3003	523.80 x 57.00 x 1.80
5	Outlet Header, Solder Well Type	1	AI 3003	546.00 x 99.70 x 1.80	5	Outlet Header, Solder Well Type	1	AI 3003	523.80 x 57.00 x 1.80
8	Top Side Piece	1	AI 3003	720.00 x 99.70 x 1.80	8	Top Side Piece	1	AI 3003	720.00 x 57.00 x 1.80
9	Bottom Side Piece	1	AI 3003	720.00 x 99.70 x 1.80	9	Bottom Side Piece	1	AI 3003	720.00 x 57.00 x 1.80
10	Inlet Tank	1	AI 3003	446.00 x 140.00 x 1.80	10	Inlet Tank	1	AI 3003	423.80 x 140.00 x 1.80
11	Inlet Hose Connection	1	AI 3003	50.40	11	Inlet Hose Connection	1	AI 3003	50.40
12	Outlet Tank	1	AI 3003	446.00 x 140.00 x 1.80	12	Outlet Tank	1	AI 3003	423.80 x 140.00 x 1.80
13	Outlet Hose Connection	1	AI 3003	50.40	13	Outlet Hose Connection	1	AI 3003	50.40
14	Filler neck/Overflow Tub	1	AI 3003	25.40	14	Filler neck/Overflow Tub	1	AI 3003	25.40
15	Drain Fitting	1	AI 3003	25.40	15	Drain Fitting	1	AI 3003	25.40
16	Heater Return Line Connection	1	AI 3003	25.40	16	Heater Return Line Connection	1	AI 3003	25.40
17	Coolant Level Indicator Fitting	1	AI 3003	25.40	17	Coolant Level Indicator Fitting	1	AI 3003	25.40

The HT radiator manufactured cost is projected to be \$83, while the LT radiator manufactured cost is projected to be \$56.

Since the electric drive motor accounts for 10 kW of the 12.9 kW heat duty of the LT radiator, we account for ~22.5% of the \$56/unit cost of the LTR within the scope of the Fuel Cell System cost.


The motor assembly and motor controller are projected to cost \$564, representing 82% of the CEM manufactured cost.

Motor Subsystems	Components	Manufactured Cost (\$)	Comments
	Copper Coils		Assumed purchased part. The price is direct
Stator Assembly	Steel Laminations	26	materials with a markup of 1.15. 1 kg copper coil (\$7/kg) and 3.6 kg laminated steel (\$4.4/kg) with a markup of 1.15.
	Shaft	11	DFMA machining package
	Magnets	49	0.55 kg NdFeB magnet with a cost of \$88/kg
	Journal Foil Bearing	21	Assumed purchased part at \$10 each
Rotor Assembly	Thrust Journal Bearings	21	Assumed purchased part at \$10 each
	Thrust Bearing Runner	8	DFMA machining package
	Thrust Bearing Holder	9	DFMA machining package
	Seals, collar, etc.	17	Assumed purchased parts
Motor Controller	9.3 kW _e Inverter with DSP controller	372	\$40/kW from "A Novel Bidirectional Power Controller for Regenerative Fuel Cells", Final Report for DE-FG36-04GO14329, J. Hartvigsen and S.K. Mazumder, Oct. 10, 2005
	Packaging, Wire harness, thermal management, etc	30	
Total Motor Cost (\$/u	init)	564	

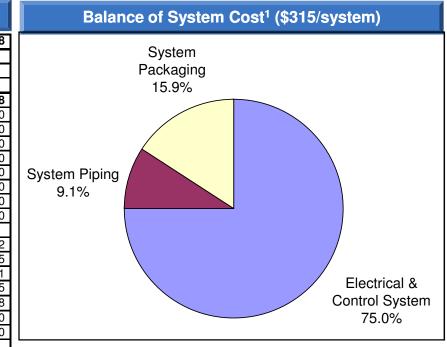
The 9.3 kW_e inverter is projected to dominate the motor controller cost.

The CEM manufactured cost of \$687, is the single largest cost contributor to the overall BOP cost.

CEM Cost (\$)						
Component	Factory Cost ¹	OEM Cost ^{1,2}				
Motor	162					
Motor Controller ³	402					
Variable Vane Assembly	50					
Housing	28	790				
Turbine Assembly	24					
Compressor Assembly	21]				
Total:	687					

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

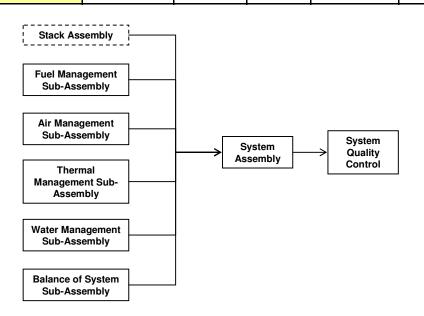
² Assumes 15% markup to the automotive OEM for BOP components

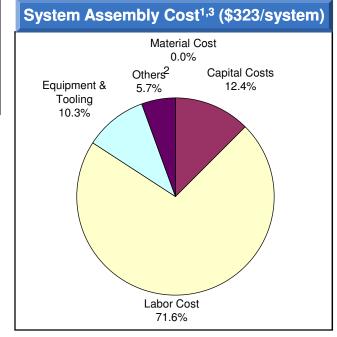

³ \$40/kW from "A Novel Bidirectional Power Controller for Regenerative Fuel Cells", Final Report for DE-FG36-04GO14329, J. Hartvigsen and S.K. Mazumder, Oct. 10, 2005

The motor assembly and motor controller (9.3 kW_e) are projected to cost \$564, representing 82% of the CEM manufactured cost.

The balance of system includes the electrical & controls system, system piping, and system packaging.

Balance of System Cost ¹ (\$)					
Balance of System	#	\$315.38			
Startup Power	0				
Startup Battery	0				
Switching Regulator for recharging (on MB)	0				
Electrical & Controls System	1	\$236.58			
Main Control Board	1	\$6.00			
Control Power Regulator	1	\$6.00			
Control Power Circuit Breaker	1	\$2.00			
Distributed Processors	3	\$6.00			
On/off Power FET to control solenoid valves	3	\$3.00			
Pre Cooler Fan Motor Relay	1	\$2.00			
Sensor Signal Conditioning	1	\$10.00			
Memory chip for history	1	\$10.00			
Main Wiring Harness					
RTD Sensor Wiring	12	\$7.02			
Other Sensor Wiring	24	\$14.05			
On/Off Valve Wiring	4	\$3.51			
Motor Control Wiring	24	\$14.05			
Connectors	18	\$6.58			
Power Wiring	8	\$19.20			
Safety Contactor	1	\$30.00			
Sensors					
Humidity	1	\$8.36			
Flow Rate	1	\$10.00			
Differential Pressure	2	\$18.80			
Temperature	2	\$5.00			
H ₂ sensor for anode exhaust	1	\$45.00			
Prestack CO sensor	1	\$10.00			
System Piping		\$28.80			
Piping		\$4.80			
Fittings (Ts/ends)		\$24.00			
System Packaging	1	\$50.00			


¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).



Progress 2009 PEMFC System System Assembly Cost

A complete 80 kW_{net} PEMFC system (including two stacks, balance-of-stack, BOP subsystems, balance-of-system, stack QC, and system QC) is estimated to be assembled in ~ 5 hours.

Process Name	Capex Per Station (\$)	# of Stations	Labor Per Station	Cycle Time (min/unit)	Required Space (m ²)	Equipment Power (kW)
System Assembly ³	200,000	462	1	213	20	10
System QC ⁴	300,000	33	2	15	20	10

 $^{\rm 1}$ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Other costs include utilities, maintenance, and building

³ System Assembly category includes BOP subsystem assembly, balance-ofsystem assembly, and final system assembly

⁴ System QC includes visual inspection, leakage tests, and power-on/voltage test

System Quality Control⁴ cost is included, while system conditioning / break-in is not included.

Progress Sensitivity Analyses

We performed single- and multi-variable sensitivity analyses to examine the impact of major stack and BOP parameters on PEMFC system cost.

- Single variable stack sensitivity analysis
 - Varied one parameter at a time, holding all others constant
 - Varied overall manufacturing assumptions, economic assumptions, key stack performance parameters, and direct material cost, capital expenses and process cycle time for individual stack components
 - Assumed stack rated power, operating pressure, temperature, humidity requirements and cell voltage remained invariant
- Single variable BOP sensitivity analysis
 - Varied one parameter at a time, holding all others constant
 - Varied overall manufacturing assumptions, economic assumptions, and direct material cost, capital expenses and process cycle time for individual BOP components
 - Assumed stack rated power, operating pressure, temperature, humidity requirements and cell voltage remained invariant
- Multi-variable (Monte Carlo) system sensitivity analysis
 - Varied all stack and BOP parameters simultaneously, using triangular PDF
 - Performed Monte Carlo analysis on individual stack and BOP components, the results of which were then fed into a system-wide Monte Carlo analysis

Pt loading, power density, and Pt cost are the top three drivers of the PEMFC system cost¹.

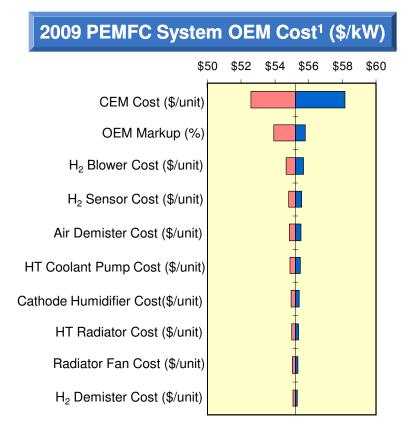
2009 PEMI	- 	n OEM Co	st ¹ (\$/kW)		#	Variables	Min	Max	Base	Comments
	\$40	\$60	\$80	\$100	1	Pt Loading (mg/cm ²)	0.15	0.75	0.15	Minimum: 2009 status; Maximum: TIAX 2005 report ²
Pt Loading (mg/cm ²)					2	Power Density (mW/cm²)	350	1000	701	Minimum: industry feedback; Maximum: DOE 2015 target ³ .
Power Density (mW/cm ²) Pt Cost (\$/tr.oz.)		-			3	Pt Cost (\$/tr.oz.)	450	1675	1100	Minimum: ~ 108-year min. in 2007 \$ ⁴ ; Maximum: 12-month maximum LME price ⁵
Membrane Cost (\$/m ²)		+			4	Membrane Cost (\$/m ²)	10	50	11.4	Minimum:GM ⁶ study; Maximum: DuPont ⁷ projection from 2002
Bipolar Plate Cost (\$/kW)		- - -			5	Bipolar Plate Cost (\$/kW)	1.8	5.0	2.9	Minimum: Based on component single variable sensitivity analysis; Maximum: DOE 2010 target ³
Interest Rate (%)		+			6	Interest Rate (%)	8%	20%	15%	Based on industry feedback
GDL Cost (\$/kW)		 -			7	GDL Cost (\$/kW)	1.3	1.9	1.6	Minimum: 80% of the baseline; Maximum: 120% of the baseline
Viton Cost (\$/kg)					8	Viton Cost (\$/kg)	39	58	48	Based on industry feedback

1. High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Assumes a % markup to automotive OEM for BOP components.

2. Carlson, E.J. et al., "Cost Analysis of PEM Fuel Cell Systems for Transportation", Sep 30, 2005, NREL/SR-560-39104

3. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

4. www.platinum.matthey.com


5. www.metalprices.com

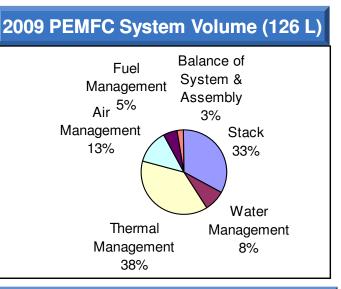
6. Mathias, M., "Can available membranes and catalysts meet automotive polymer electrolyte fuel cell requirements?", Am. Chem. Soc. Preprints, Div. Fuel Chem., 49(2), 471, 2004

7. Curtin, D.E., "High volume, low cost manufacturing process for Nafion membranes", 2002 Fuel Cell Seminar, Palm Springs, Nov 2002

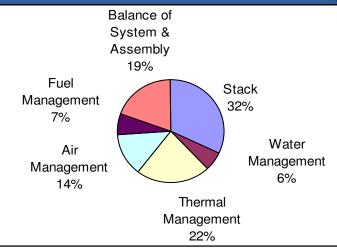
Among the BOP components, the CEM has the greatest impact on the PEMFC system cost¹.

¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW). Assumes a % markup to automotive OEM for BOP components.

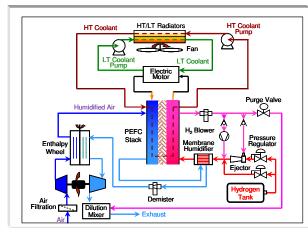
² Knight, B., Clark, T. et al., "Development of Sensors for Automotive PEM-based Fuel Cells", DE-FC04-02AL67616, Dec. 2005

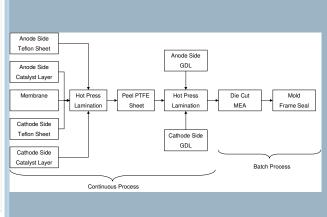

#	Variables	Min	Max	Base	Comments
1	CEM Cost (\$/unit)	472	925	687	Based on component single variable sensitivity analysis
2	OEM Markup (%)	5%	20%	15%	Based on industry feedback
3	H ₂ Blower Cost (\$/unit)	177	259	219	Based on component single variable sensitivity analysis
4	H ₂ Sensor Cost (\$/unit)	10	80	45	UTRC Final Report ²
5	Air Demister Cost (\$/unit)	125	187	156	Min. & Max: ±20% of the base
6	HT Coolant Pump Cost (\$/unit)	120	180	150	Min. & Max: ±20% of the base
7	Cathode Humidifier Cost (\$/unit)	77	116	96	Min. & Max: ±20% of the base
8	HT Radiator Cost (\$/unit)	66	99	83	Min. & Max: ±20% of the base
9	HT/LT Radiator Fan Cost (\$/unit)	60	90	75	Min. & Max: ±20% of the base
10	H ₂ Demister Cost (\$/unit)	49	73	61	Min. & Max: ±20% of the base
11	Anode Humidifier Cost (\$/unit)	41	62	52	Min. & Max: ±20% of the base
12	System Packaging Cost (\$/unit)	40	60	50	Min. & Max: ±20% of the base
13	Fuel Solenoid Valve Cost (\$/unit)	37	56	46	Min. & Max: ±20% of the base
14	Air Precooler Cost (\$/unit)	35	52	43	Min. & Max: ±20% of the base
15	LT Coolant Pump Cost (\$/unit)	24	36	30	Min. & Max: ±20% of the base
16	Power System Safety Contactor Cost (\$/unit)	24	36	30	Min. & Max: ±20% of the base
17	Air/H ₂ Mixer Cost (\$/unit)	22	33	27	Min. & Max: ±20% of the base
18	H ₂ Purge Valve Cost (\$/unit)	10	16	13	Min. & Max: ±20% of the base
19	H ₂ Check Valve Cost (\$/unit)	7	11	9	Min. & Max: ±20% of the base

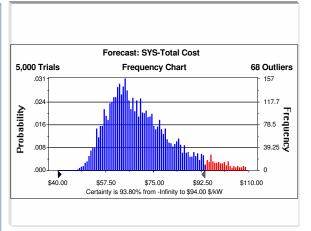
The power density and specific power of the 2009 stack and system do not meet the DOE 2010 targets.


PEMFC Subsystem	Volume ¹ (L) Weight (kg)		DOE 2010 Target
Stack	42	45	
Membrane	0.3	0.4	
Electrodes	0.0	0.0	
GDL	4.8	4.8	
Seals	0.9	1.8	
Bipolar plates	31.0	26.2	
Balance of Stack	4.5	11.9	
Power Density ^{1,2} (W _e /L)	1,90	2,000	
Specific Power ² (W _e /kg)	1,7	2,000	
Balance of Plant	84	96	
Water Management	10	8	
Thermal Management	48	31	
Fuel Management	6	10	
Air Management	17 19		
Balance of System & System Assembly	3	27	
Total System	126	141	
Power Density ^{1,2} (W _e /L)	63	650	
Specific Power ² (W _e /kg)	56	650	

¹ Does not include packing factor, which would lower volumetric power density ² Based on stack net power output of 80 kW, and **not** on the gross power output

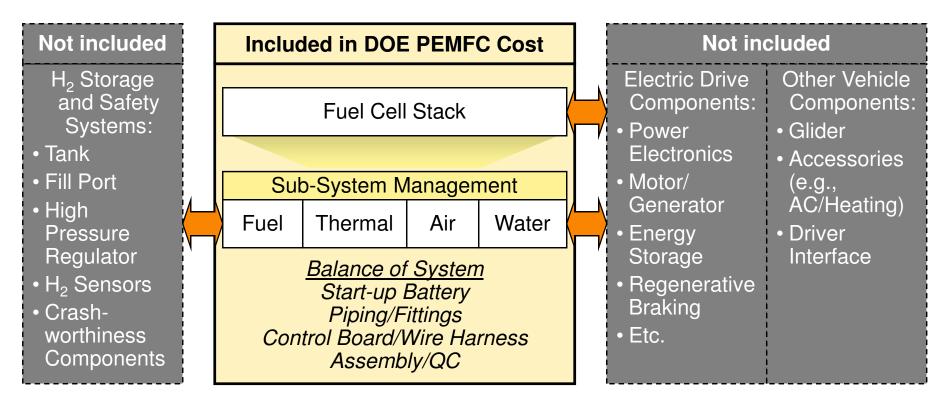

2009 PEMFC System Weight (141 kg)




Approach Overall Cost Assessment

Manufacturing cost estimation involves technology assessment, cost modeling, and industry input to vet assumptions and results.

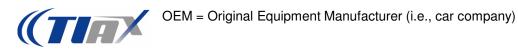
Technology Assessment	Cost Model and Estimates	Overall Model Refinement
 Perform Literature Search Outline Assumptions Develop System Requirements and Component Specifications Obtain Developer Input 	 Develop Bulk Cost Assumptions Develop BOM Specify Manufacturing Processes and Equipment Determine Material and Process Costs 	 Obtain Developer and Industry Feedback Revise Assumptions and Model Inputs Perform Sensitivity Analyses



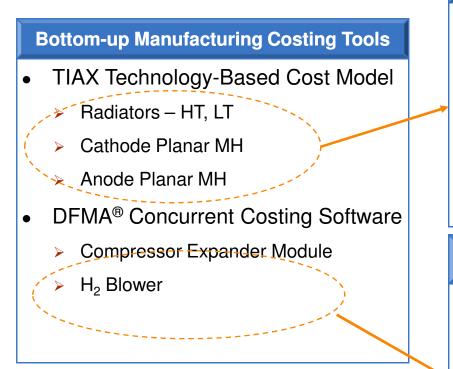
Approach Scope

Our cost assessment includes the fuel cell stack and related BOP subsystems, but does not include electric drive or other necessary powertrain components.

Quality Control (QC) includes leak and voltage tests, but does not include stack conditioning¹.


¹ Task to "Estimate High-Volume Costs of Stack Conditioning" is planned to be completed in 2010, pending funding authorization from DOE

We estimate an automotive OEM cost, applying no markup on stack components, and assuming a 15% markup on BOP components.


Markup applied to BOP components	Factory Cost for Stack an	nd BOP Components
 Corporate Expenses Research and Development Sales and Marketing General & Administration Warranty Taxes 	 Fixed Costs Operating Tooling & Fixtures Amortization Equipment Maintenance Indirect Labor Cost of operating capital (working period 3 months) Non-Operating Equipment & Building Depreciation Cost of non-operating capital 	 Variable Costs Manufactured Materials Purchased Materials Direct Labor (Fabrication & Assembly) Indirect Materials Utilities

Automotive OEM Cost

- We assume a vertically integrated process for the manufacture of the stack by the automotive OEM, so no mark-up is included on the major stack components
- · Raw materials are assumed to be purchased, and therefore implicitly include supplier markup
- We assume 100% debt financed with an annual interest rate of 15%, 10-year equipment life, and 25-year building life.

We used two different bottom-up costing tools to estimate the highvolume cost of the major BOP components¹.

¹ We scaled quotes/catalog-based estimates for BOP components such as air precooler, needle metering valve, coolant pumps, radiator fans, H₂ ejectors, valves/regulators and piping/fittings.

- Defines process scenarios according to the production volume
- Easily defines both continuous as well as batch processes
- Breaks down cost into various categories, such as material, labor, utility, capital, etc.
- Assumes dedicated process line yields higher cost at low production volumes

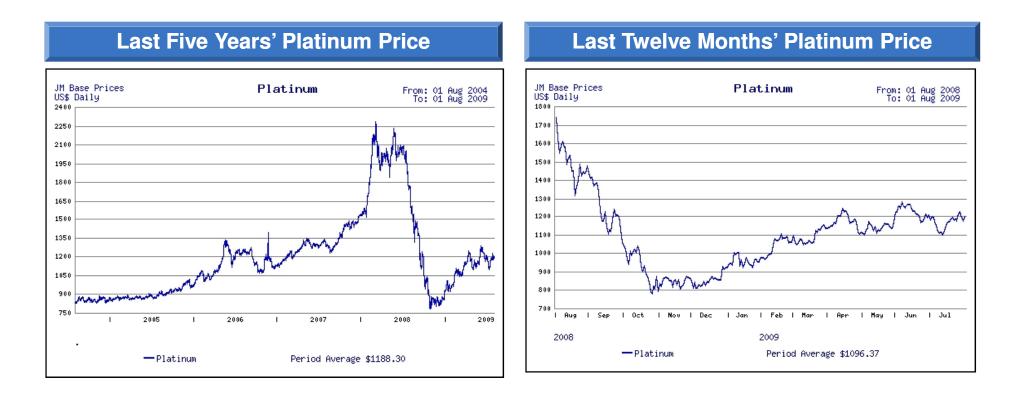
DFMA® Concurrent Costing

- Has a wide range of built-in manufacturing databases for traditional batch processes, such as casting, machining, injection molding, etc.
- Initially developed for the automotive industry; not well suited for processes used in manufacture of PEMFC stacks
- Does not assume dedicated process line yields lower cost at low production volumes

To be consistent with ANL's stack performance model, we made the following material assumptions for the 2009 cost projection.

Component	Parameter	Selection
	Material	20 μm PFSA
Membrane	Supported	No mechanical reinforcement; assumed to be chemically stabilized
	Catalyst	Ternary PtCo _x Mn _y alloy
Electrodes (Cathode and Anode)	Туре	Nano-Structured Thin Film
	Support	PR-149 Organic whiskers
Gas Diffusion Layer (GDL)	Material	180 µm Woven carbon fiber
Gas Dillusion Layer (GDL)	Porosity	70%
Bipolar Plate	Туре	Expanded graphite foil
Seal	Material	Viton®

We used a Pt price of \$1,100/tr.oz. for the baseline analysis and captured the impact of variation in Pt price through sensitivity analyses.



PFSA = Perfluorosulfonic acid

PR = Perylene Red

Progress Historic Pt Price

Platinum at \$1,100/tr.oz. is close to the average price (\$1,096/tr.oz.) over the 12 month period from Aug. 2008 to Aug. 2009.

The Pt price averaged over the last five years is ~\$1,188/tr.oz.

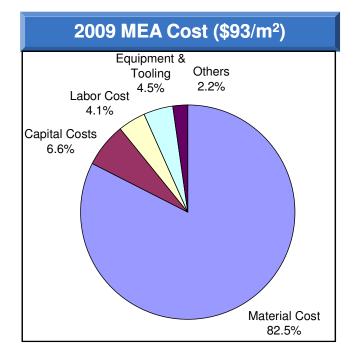
Raw materials for stack and BOP components are assumed to be purchased, and therefore implicitly include supplier markup.

PEMFC Sub-system	Raw Materials / Purchased Components				
Stack					
Membrane	PFSA ionomer, isopropanol, silicone-treated PET film, polypropylene film, water				
Electrodes	Pt, Co, Mn, perylene red (PR-149) dye, aluminum-coated film substrate, Teflon sheet				
GDL	Woven carbon fiber, PTFE, carbon powder, water				
Seal	Viton®				
Bipolar Plates	Expanded graphite flake, vinyl ester, carbon fiber, poly dimethylsiloxane (SAG), methyl ethyl ketone peroxide, cobalt naphthenate				
Balance of Stack	Stack manifold, tie bolts, end plates, current collectors, electrical insulators				
Balance of Plant					
Water Management	Nickel foam, Nafion [®] , nitrile rubber, aluminum, HDPE, woven carbon fiber				
Thermal Management	Aluminum coil, aluminum tubing, radiator fan, coolant pumps, air precooler, temperature sensors				
Air Management	NdFeB magnet, steel bar stock, Teflon [®] insulation, copper coils, steel laminations, bearings, seals, motor controller, wire harness, air demister, air/H ₂ mixer, flow orifice, air filter				
Fuel Management	SS316 bar, SS316 sheet, seals, H_2 blower motor, H_2 ejectors, H_2 demister, solenoid valves, purge valve, check valve				

Progress 2009 PEMFC Stack Cost Breakdown

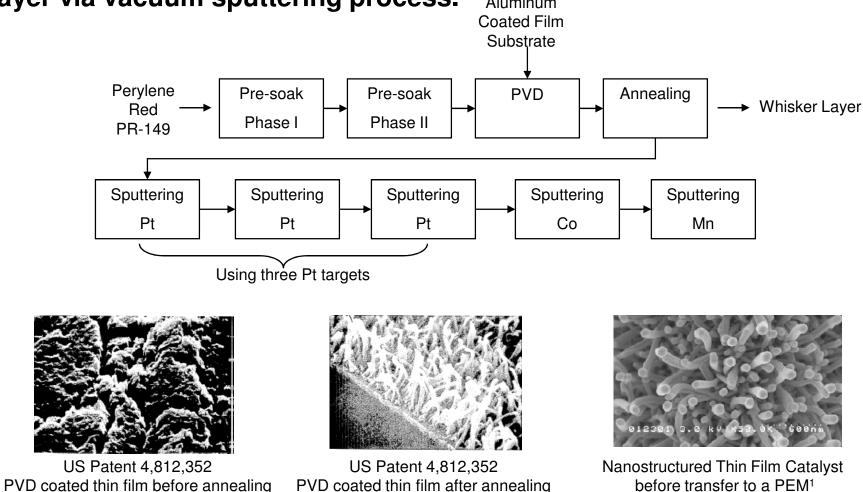
Detailed results of 2009 PEM fuel cell stack cost breakdown.

			Active	Area Basis	1					
2009 PEMFC Stack Costs ²		Material Cost ¹ (\$/m ²)	Process Cost ¹ (\$/m ²)	Total Cost ¹ (\$/m ²)	Unit Cell Weight/Area (g/cm ²)	Stack Module Weight (kg)	Stack Module Material Cost ² (\$)	Stack Module Process Cost ² (\$)	Stack Module Cost ² (\$)	Stack Module Cost ² (\$/kW)
	Anode GDL	\$4.12	\$0.72	\$4.84	0.02	2.37	\$54.21	\$9.50	\$63.71	\$0.80
	Anode Active Layer	\$19.28	\$3.15	\$22.43	0.00	0.01	\$253.95	\$41.52	\$295.47	\$3.69
MEA	Electrolyte	\$9.77	\$1.67	\$11.44	0.00	0.40	\$128.74	\$21.96	\$150.70	\$1.88
	Cathode Active Layer	\$36.97	\$5.14	\$42.11	0.00	0.00	\$486.97	\$67.67	\$554.64	\$6.93
	Cathode GDL	\$4.12	\$0.72	\$4.84	0.02	2.37	\$54.21	\$9.50	\$63.71	\$0.80
	MEA Total	\$74.26	\$11.40	\$85.66	0.04	5.16	\$978.08	\$150.15	\$1,128.23	\$14.10
Bip	polar Coolant Plate	\$10.25	\$7.35	\$17.60	0.10	26.17	\$135.00	\$96.83	\$231.83	\$2.90
	Seals					1.81	\$79.09	\$114.55	\$193.64	\$2.42
	End Plates					1.97	\$3.91	\$6.33	\$10.24	\$0.13
С	Surrent Collectors					1.23	\$1.40	\$2.26	\$3.67	\$0.05
	Insulators					0.80	\$8.62	\$9.56	\$18.18	\$0.23
Stack Manifold/Outer Wrap						5.40	\$8.13	\$13.09	\$21.22	\$0.27
	Tie Bolts					2.49	\$19.68	\$1.72	\$21.40	\$0.27
	Stack Assembly							\$158.87	\$158.87	\$1.99
Total Unit Cell		\$84.51	\$18.75	\$103.26	0.21	45.02	\$1,233.93	\$553.35	\$1,787.27	\$22.34

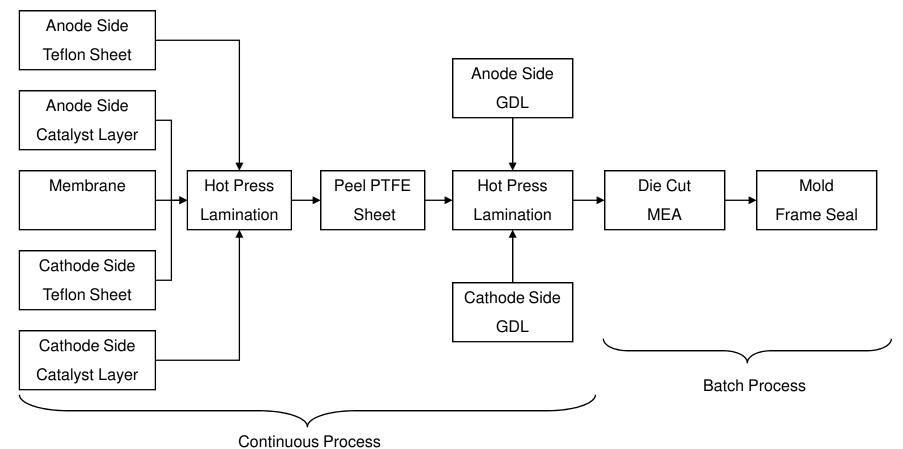

¹ Manufactured cost on an active area basis

² High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

Material costs dominate the manufactured cost of the stack components. For example, materials make up ~83% of the MEA cost in 2009.


Manufactured Cost	2008 MEA ¹ (\$/m ²)	2009 MEA ¹ (\$/m ²)
<i>Material - Membrane - Electrode - GDL</i>	117.71 - 13.83 - 91.90 - 11.98	76.70 - 9.77 - 58.69 - 8.23
Capital Cost	6.57	6.18
Labor	1.02	3.85
Tooling & Equipment	3.73	4.21
Other ²	1.71	2.03
Total	131	93

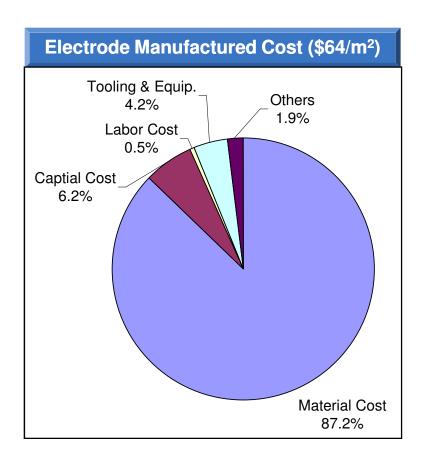
In 2009, the MEA cost was lower due to lower material costs for the membrane (20 μ m), electrodes (Pt loading = 0.15 mg/cm²) and GDL (180 μ m).


Organic whisker support was fabricated by physical vapor deposition (PVD) with vacuum annealing process. Catalysts were coated to this layer via vacuum sputtering process. Aluminum

¹M. K. Debe, Durability Aspects of Nanostructured Thin Film Catalysts for PEM Fuel Cells, ECS Transactions, 1(8) 51-66 (2006)

The anode and cathode organic whisker layers were hot pressed to the membrane with Teflon[®] backing sheets.

The catalyst coated membrane and GDL layers were laminated to form an MEA in roll good form; the MEA was cut into sheets and molded with a frame seal.

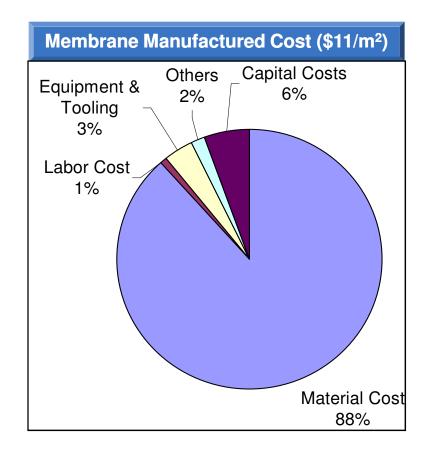


Platinum price dominates the electrode cost of \$64/m². We have assumed Pt price to be \$1,100/tr.oz. or \$35.4/g.

Manufactured Cost	Anode ¹ (\$/m ²)	Cathode ¹ (\$/m ²)	Total ¹ (\$/m ²)	
Material	19.28	36.97	56.25	
Capital Cost	1.49	2.54	4.02	
Labor	0.16	0.19	0.35	
Tooling	1.04	1.68	2.72	
Other ²	0.47	0.73	1.20	
Total	22	42	64	

 1 m² of active area

² Other costs include utilities, maintenance, and building

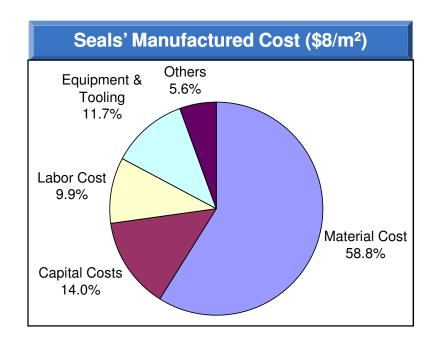

Platinum at \$1,100/tr.oz. is close to the average price (\$1,096/tr.oz.) over the last year.

The estimated membrane cost on an active area basis is \$11/m², with material cost representing about 88% of the total cost.

Membrane Manufactured Cost ¹								
Component	Mate	erial	Proc	cess				
	(\$/m²)	(\$/kg)	(\$/m²)	(\$/kg)				
Film Handling	0.31	5.25	0.22	3.71				
Coating	7.80	132.62	0.29	4.90				
Drying & Cooling	0.00	0.00	1.00	17.02				
Quality Control	0.00	0.00	0.04	0.60				
Laminating	0.00	0.00	0.06	0.94				
Packaging	1.66	28.29	0.07	1.16				
Subtotal	9.77	28.34						
Total	11.44 (\$/m²)							
		194.50 (\$/kg)						

¹ Manufactured cost on an active area basis or per kg of finished membrane basis (accounts for scrap and yield)

In 2008, the membrane cost was \$16/m² due to higher material costs associated with a thicker 30 μ m membrane.


Progress 2009 Seal Cost

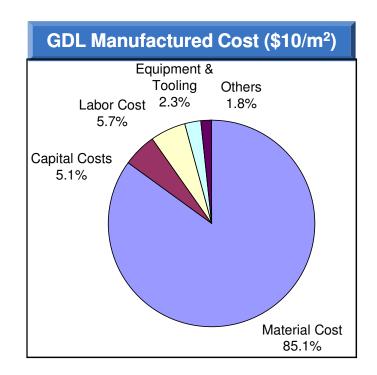
Transfer molding is used to fabricate the seals between the MEA and bipolar/cooling plate. The seal cost is ~\$8/m².

Manufactured Cost ¹	Seals (\$/m²)
Material	4.78
Capital Cost	1.14
Labor	0.81
Tooling	0.95
Other ²	0.45
Total	8.13

¹ Manufactured cost on an active area basis

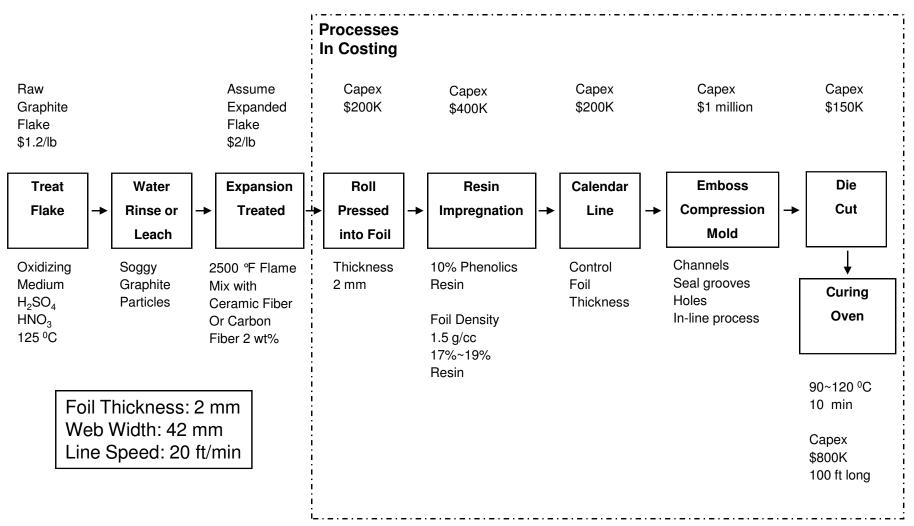
² Other costs include utilities, maintenance, and building

The seal material is Viton[®] which costs ~\$20/lb.


Progress 2009 GDL Cost

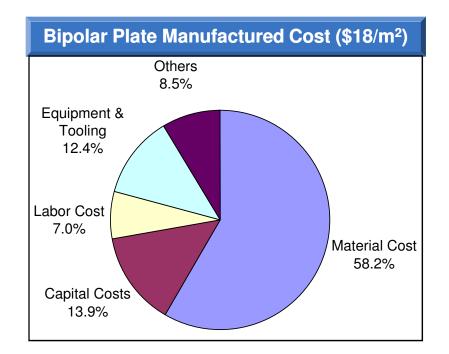
The estimated high-volume cost of the woven carbon fiber GDL (for *both* anode and cathode), is ~\$10/m², on an active area basis.

Manufactured Cost ¹	GDL (\$/m²)
Material	8.23
Capital Cost	0.50
Labor	0.55
Tooling	0.22
Other ²	0.17
Total	9.67


¹ Manufactured cost on an active area basis

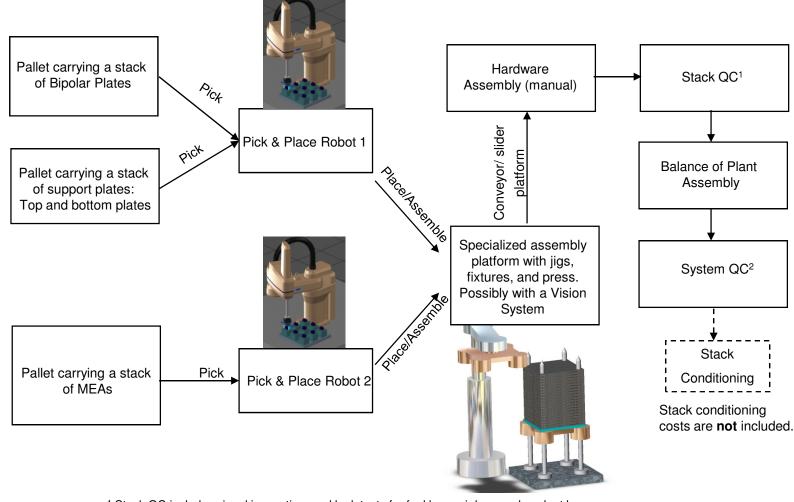
² Other costs include utilities, maintenance, and building

Our process flow for the expanded graphite bipolar plate is based on a GrafTech[®] process chart and related patents.

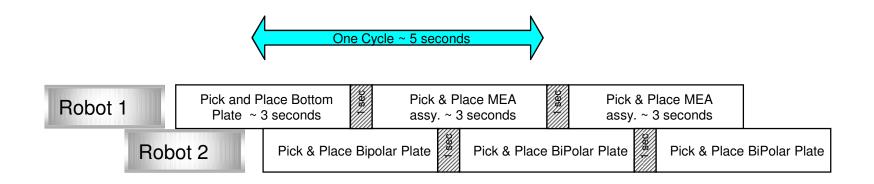


We estimate the expanded graphite foil bipolar plate cost is \$18/m² at high volume.

Bipolar Plate Manufactured Cost ¹ (\$/m ²)							
Component	Material	Process					
Roll Form	10.25	0.92					
Impregnation		1.03					
Calendar		0.66					
Compression Molding		2.15					
Die Cut		0.57					
Curing	2.01						
Subtotal	10.25 7.35						
Total	17.60						


¹ Manufactured cost on an active area basis

We assumed a raw graphite flake cost of \$1.2/lb and expanded graphite flake cost of \$2/lb.



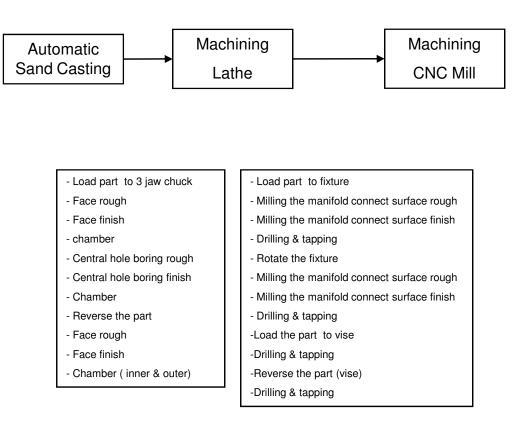
A pair of robots in a specialized assembly station with a vision system is assumed to assemble the stack.

¹ Stack QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop ² System QC includes visual inspection, leakage tests, and power-on/voltage test Assuming a two-robot assembly station, we estimate that two stacks¹ and the Balance of Stack are assembled in ~ 1 hour.

Stack assembly step	Time	Comments		
Pick & place a single repeat unit	~ 5 seconds	Based on two-robot setup		
Assemble a single stack ¹	~ 19 minutes	For 217 MEAs and bipolar plates		
Assemble balance of stack (BOS)		BOS includes endplates, electrical insulators, outer wrap/stack manifold, current collectors, tie bolts		
Stack Quality Control ²	~ 15 minutes	Stack burn-in / conditioning time is not included		

¹ We assume two stacks per 80 kW_{net} PEMFC system

² Stack QC includes visual inspection, and leak tests for fuel loop, air loop and coolant loop


The rotor and single vane structure in the Parker Hannifin Model 55 Univane H₂ blower are referenced from U.S. Patent 5,374,172.

#	Selected Components	Material	Major Manufacturing Processes				
1	Motor Side End Plate	SS316	Automatic sand casting; Turning; Drilling				
2	Blower Housing	SS316	Automatic sand casting; Turning; Drilling				
3	Inlet Manifold	SS316	Powder metallurgy				
4	Outlet Manifold	SS316	Powder metallurgy				
5	5 End Plate SS316		Automatic sand casting; Turning; Drilling				
6	Blower Shaft	SS316	Turning; Milling; Heat treatment; Grinding				
7	Rotor Al		Casting; Turning; Milling; Broaching				
8	Vane	SS316	Hot forging; Drilling; Reaming				

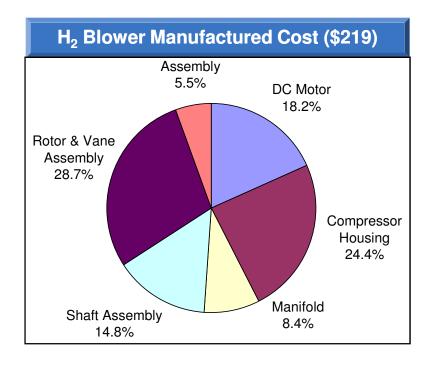
The major manufacturing processes for selected components of the H₂ blower are tabulated above.

The blower housing manufacturing process represents the level of detail we captured in the costing¹ of the H_2 blower.

H₂ Blower Housing Manufacturing Process

The projected H₂ blower manufactured cost is \$219 per unit.

#		Part Name	Quantity	Material	OD (cm)	L (cm)	W (cm)	Wall Thickness (cm)	Total Vol. (Cm^3)	Total Wt. (kg)	TIAX Model Total (unit Cost)
1	100	We DC Motor	1	Misc	16.51	8.89			1902.24	1.00	40.00
_		Plate (motor side)	1	SS316	16.51	2.54		0.32	96.48	0.75	\$13.75
3		Screw	4	Misc	0.64	2.54			0.80	0.02	0.20
4		O-Ring	1	Misc	13.97					0.01	0.50
5	_	Labyrith Seal (main)	1	Misc	5.08	1.27				0.02	2.00
6		O-Ring	1	Misc	5.08					0.01	0.20
7		C-Clip	1	SS316	5.08					0.01	0.10
8		Labyrith Seal	1	Misc	4.45					0.02	2.00
0		Labyiitii Seai		IVIISC	4.43					0.02	2.00
	Blov	wer Housing	1	SS316	15.24	8.89		0.32	106.65	0.83	\$19.66
10		Screw	8	Misc	0.64					0.04	0.40
11		O-Ring	1	Misc	13.97					0.01	0.50
12		Compressor Shaft	1	SS316	1.59	12.70			25.12	0.20	\$9.17
13		Bearing	2	SS316	3.81	2.54			28.94	0.20	18.70
14	-	Seal	2	Misc	3.81	2.04			20.04	0.01	0.40
15		Rotor	1	AI	10.16	7.62			308.73	0.83	\$9.40
16	_	Vane Guide	2	SS316	7.62	1.27		1.27	32.06	0.50	\$15.60
17		Vane Guide Bearing	2	Misc	7.62	1.60	0.54	4.07	61.62	0.48	30.00
18	_	Vane	1	SS316		7.62	2.54	1.27	24.58	0.19	\$3.82
19		Vane Pin	1	SS316	0.95	9.62			6.85	0.05	4.00
20		C-Clip	2	SS316	1.35					0.01	0.10
21	Inle	t Manifold	1	SS316	4.45	8.89		0.64	35.17	0.27	\$7.33
22		Seal	1	Misc		5.08	3.81			0.01	0.50
23		Screw	4	Misc	0.32					0.02	0.20
24		Fitting	1	SS316	4.45	5.08		1		0.10	1.00
25		O-Ring	1	Misc	2.54	2.00				0.01	0.20
-	Out	let Manifold	1	SS316	4.45	8.89		0.64	35.17	0.27	\$7.33
27		Seal	1	Misc		5.08	3.81			0.01	0.50
28		Screw	4	Misc						0.02	0.20
29		Fitting	1	SS316	4.45	5.08				0.10	1.00
30	-	O-Ring	1	Misc	2.54	0.04	L	0.04	70.00	0.01	0.20
31 32	Enc	l Plate Screw	1 8	SS316 Misc	15.24	3.81		0.64	72.36	0.56	\$11.97 0.40
32		O-Ring	8	Misc	8.89					0.04	0.40
34		End Cover	1	SS316	7.62	0.64			28.94	0.01	\$5.21
35		Screw	4	Misc						0.02	0.20
36		O-Ring	1	Misc	6.35					0.01	0.20
37	Sup	port	1	Steel		15.24	15.24	0.25	58.99	0.46	0.00

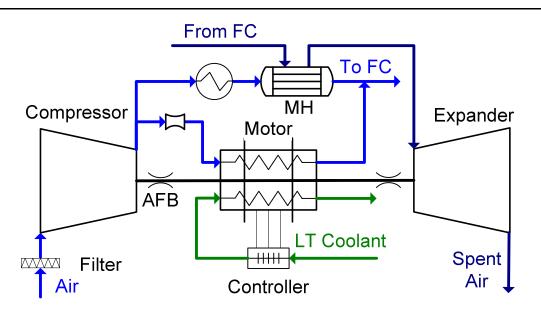


SubTotal: \$207.44

Assembly: \$12.00

Total: **\$219.44**

The rotor & vane assembly, blower housing, and DC motor are the top three cost drivers for the H_2 blower.


H ₂ Blower Cost (\$)								
Component	Factory Cost ¹	OEM Cost ^{1,2}						
DC Motor	40							
Blower Housing	53							
Manifold	18							
Shaft Assembly	33							
Rotor & Vane Assembly	63							
Assembly	12							
Total:	219	252						

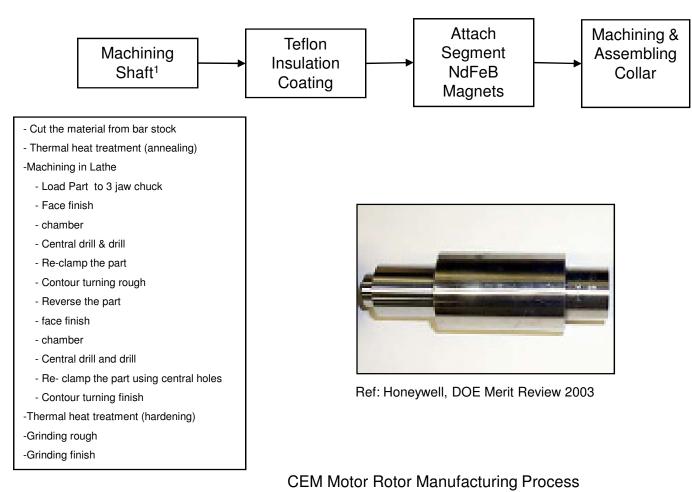
¹ High-volume manufactured cost based on a 80 kW net power PEMFC system. Does not represent how costs would scale with power (kW).

² Assumes 15% markup to the automotive OEM for BOP components

Progress 2009 PEMFC System CEM

- Mixed axial flow compressor
- Variable nozzle turbine
- 3-phase brushless DC motor, liquid and air cooled
- Motor controller, liquid cooled
- Air foil bearing (AFB)
- Efficiencies at rated power: 70% compressor, 73% expander, 86% motor, 87% controller

R. K. Ahluwalia and X. Wang, Automotive Fuel Cell System with NSTFC Membrane Electrode Assemblies and Low Pt Loading, July 21, 2009


CEM = Compressor Expander Motor MH = Membrane Humidifier AFB = Air-foil Bearing LT = Low-Temperature

The references used to determine the overall design and major manufacturing processes for the CEM are tabulated below.

Component	ponent References		Selected	Material	Major Manufacturing		
Overall System	2005, 2004, 2003, 2000; 0.5. Patent 5,605,045 Honeywell, DOE program review,		Components Turbine Housing	AI	Processes Cold chamber die casting; Turning; Drilling		
			Motor Housing	AI	Cold chamber die casting; Turning; Drilling		
Electrical Motor			Compressor Housing	AI	Cold chamber die casting; Turning; Drilling		
Motor Power Electronics	Honeywell, DOE program review, progress report & annual report, 2005; Caterpillar, DOE Contract DE- SC05-00OR-99OR22734	4	Motor connecting shaft	Steel	Turning; Heat treatment; Grinding		
		5	NdFeB Magnet	NdFeB	Mixing; Molding; Sintering (purchased)		
Turbine Variable Nozzle Vanes,	U.S. Patent 6,269,642; Garrett/Honeywell, DE-FC05- 00OR22809	6	Turbine Wheel	AI	Investment casting; HIP		
Unison Ring Journal Bearings	ULS Patent 2006/0153704		Compressor Impeller	AI	Investment casting; HIP		
			Thrust Bearing Runner	Steel	Turning; Heat treatment; Grinding		

The motor rotor manufacturing process represents the level of detail we captured in the costing of the CEM.

¹ Boothroyd Dewhurst Machining package

The estimated CEM (including motor and motor controller) cost is \$687 per unit.

ŧ	Part Name	Quantity	Reference	Ref. Part #	Material	OD (cm)	L (cm)	W (cm)	H (cm)	Wall Thickness (cm)	Total Vol. (Cm^3)	Total Wt. (kg)	TIAX Model Total (ur Cost)
1	Turbine Housing	1	US6269642	24	AI	20.32			7.62	0.16	127.19	0.34	\$5.39
2	Bolt	6			Misc	0.60	1.20				2.03	0.02	\$0.30
3	Washer	6			Misc	1.00	0.10					0.01	\$0.30
	Tie Rod	1	US6269642	30	Steel	1.00	4.00				3.14	0.02	\$3.72
5	Turbine Wheel	1			Al	5.00	5.00				0.07	0.20	\$20.00
6	Variable Vane Assembly												\$0.00
7	Nozzle Wall	1	US6269642	38	Steel	17.78				0.30	36.46	0.28	\$2.54
8		9	US6269642	36	Steel	3.00	0.50	0.50			6.75	0.47	\$15.39
9		9	US6269642	40	Steel	0.20	1.00				0.28	0.02	\$0.00
10	Actution Tab	9	US6269642	44	Steel		1.00	0.30	0.30		0.81	0.06	\$0.00
11	Unison Ring	1	US6269642	48	Steel	15.24	0.50				84.88	0.66	\$16.88
12	Actuator Crank	1	US6269642	50	Steel		2.00	1.00	1.00		2.00	0.02	\$1.11
13	Crank Bushing	1	US6269642	60	Steel	1.20	1.00			0.10	0.35	0.00	\$0.05
14	Crank Gear	1	US6269642	62	Steel	2.00	1.00			0.50	2.36	0.02	\$4.21
15	Crank Gear Pin	1	US6269642	64	Steel	0.20	2.00				0.06	0.00	\$0.10
16		1	US6269642	66	Misc						3.00	0.02	\$2.15
17		1			Al	20.32	1.50			2.54	212.71	0.57	\$6.03
18	Solenoid Valve	1	US6269642	85	Misc							0.20	\$5.00
19		1	US6269642	108	Steel		3.00	1.20		0.20	0.72	0.20	\$0.01
20		i	US6269642	110	01661	0.40	1.00	1.20		0.20	0.12	0.00	\$0.05
21		1	US6269642			0.60				0.10		0.00	\$0.05
21		1	US6269642	88	Steel	0.60	6.00			0.10	1.70	0.00	\$0.05
22		1	036269642	00	Sleel	0.60	6.00				1.70	0.01	\$0.46
24		1	US5605045	16	Steel	3.31	20.32			0.00	115.21	0.90	\$10.64
25	Thermal Insulation	1	US5605045	60	Teflon	3.81	12.70			0.25	35.49	0.07	\$1.47
26		4	US5605045	62	NdFeB	4.68	12.70			0.44	73.64	0.55	\$48.60
27		1	US5605045	70	Steel	5.08	12.70			0.20	38.92	0.30	\$7.58
28	Labyrith Seal	1	US2006/0153704	130	Misc	5.31				1.00		0.02	\$2.00
29		i	US2006/0153705	100	Steel	3.31	5.08			1.00		0.10	\$10.00
30	Motor Housing	1	DE-FC36-02AL67624		AI	20.32	20.32			0.20	432.55	1.17	\$12.26
31		8			Misc	0.60	1.20				2.03	0.16	\$0.40
32		8			Misc	1.00	0.10				0.00	0.04	\$0.40
33	Motor Stator Assembly	1	FY2000 Progress Report		Misc	9.20	12.70			1.50	460.59	2.95	\$17.91
	Motor Sator Position Ring	1	FY2000 Progress Report		WIISC	9.20	12.70			1.50	400.33	2.33	\$0.50
35		8	FY2000 Progress Report		Misc	0.60	1.20	0.00	0.00	0.00	2.03	0.16	\$0.40
36		8	FY2000 Progress Report		Misc	1.00	0.10	0.00	0.00	0.00	0.00	0.04	\$0.40
37	Motor Connector	1			Misc								\$0.50
38		1	FY2000 Progress Report		Misc	5.31						0.02	\$2.00
39		1	FY2000 Progress Report		Steel	8.00	5.08			0.50	25.00	0.20	\$7.59
							0.00			0.00	20.00		
40 41		2	FY2000 Progress Report		Misc Steel	8.00 10.00	1.00			0.50	50.00	0.20	\$20.00 \$8.59
	Thrust Bearing Holder Labyrith Seal	1	FY2000 Progress Report		Misc	10.00	1.00			0.50	50.00	0.39	\$8.59
		1	US2006/0153705		Misc	0.01	E 00					0.10	
43 44		1	FY2000 Progress Report		Al	3.31 25.40	5.08		7.62	0.16	134.69	0.10	\$10.00 \$5.39
44		8	FY2000 Progress Report		Misc	0.60	1.20	0.00	0.00	0.16	2.03	0.36	\$5.39
45		8	FY2000 Progress Report		Misc	1.00	0.10	0.00	0.00	0.00	0.00	0.02	\$0.40
40		1	FY2000 Progress Report		Al	5.00	5.00	0.00	0.00	0.00	0.00	0.01	\$20.00
48		1	FY2000 Progress Report		Misc	1.00	10.00				7.85	0.06	\$3.91
		1	1 12000 Progress Report		Steel	1.00	25.40	7.62		0.10	7.85	0.00	\$3.91
49 50					Steel		25.40	7.62	0.00	0.10	19.35		\$0.00
51		1	DOE target \$40/kW / 5.5kW	input	0.001		20.40	1.02	0.00	0.10	13.00	6.50	\$402.00
52		1				1							\$0.00
53		1											\$0.00
54		1											\$0.00
55		1											\$0.00
56		1		L								ļ	\$0.00
57	Final Assembly	1	1	1		1				1		1	\$9.65

