Cost Modeling of SOFC Technology

Eric J. Carlson Suresh Sriramulu Peter Teagan Yong Yang

15 Acorn Park Cambridge, Massachusetts 02140-2390 carlson.e@tiaxllc.com

First International Conference on Fuel Cell Development and Deployment

> University of Connecticut Storrs, Connecticut March 10, 2004

Summary

Updates to a 1999 SOFC cost model resulted in less than a ten percent increase in the cost of the stack on a kilowatt basis.

	Total Cost (\$/kW)		
Model	Co-Fired	Multi-Fired	
1999	90	80	
2003	92	87	

Drivers	for	Lower	Cost

•Lower YSZ material cost

Drivers for Higher Cost

- More interconnect material
- Additional QC steps and equipment
- •Overall process yield assumptions
- Slightly lower power density for the baseline case

Project Overview

For the SECA Core Technology Program (CTP), we updated a 1999 SOFC cost projection.

- Cost and performance/mechanical models linked to capture the influence of design, performance, and mechanical limitations on cost
- Assessed the impact of manufacturing issues (e.g., tolerances and quality control) on cost
- Model used to assess the impact of manufacturing volumes on cost

We solicited inputs from the SECA industrial teams and the CTP participants.

The model uses a set of databases to calculate cost for defined production/process flow scenarios.

A performance-thermal-mechanical model developed for NETL was used to estimate power density and stress as a function of layer thickness.

Model Assumptions

The 2010 SECA goals target a system manufacturing cost of \$400/kW. This project focused on the stack materials only.

- Only the electrochemical (anode, cathode, and electrolyte) and interconnect materials are considered in this model
 - The interconnect cost does not include a coating
- Factory costs were estimated
 - Corporate overhead, profit, and installation costs were not included
- High volume production was assumed for the baseline cost estimate (total of 250 MW with 5 kW stack as basic unit)

On an area basis, the 2003 model material cost decreased, largely driven by the reduced electrolyte (YSZ) cost.

Process costs increased by 60-75% because of added QC steps, the final assembly step, and reduced yields.

Results

Anode cost is large because of the materials costs, while the interconnects are massive.

Materials represent approximately 60% of the stack cost.

In 2003 lower material costs partially offset the increases in process cost resulting in similar \$/kW cost and \$/m² costs with the previous study.

Unit cell cost per kilowatt is most sensitive to the thickness of each EEA layer and YSZ price.

The electrolyte cost is small, but its thickness has a large impact on power density.

Achieving high power densities is critical to lower stack costs.

Status

Fixed

Fixed

Vary

Assembled stack cost will be highly sensitive to the percentage of defective EEAs.

For example, for the MF process, a 1% defect level could increase the stack cost from \$92/kW to \$278/kW.

The stack cost decreases by 80%, driven by more efficient processing, as production volume increases.

⁽TIAX

- Increasing power density will be critical to achievement of low stack cost since materials represent approximately 60% of the cost.
- Quality control of the repeat units (electrode electrolyte assemblies) will be critical to stack yield and cost.
- Increasing production volume 50-fold from 5MW to 250MW decreased process costs resulting in an 80% reduction in stack cost.

14

Thank You!

- This project was funded under DOE contract: DE-FC26-02NT41568
 - Final Report available in April
- We would like to thank:
 - Shawna Toth, Donald Collins, and Wayne Surdoval of the National Energy Technology Laboratory and the SECA Core Technology and Industry Teams

15