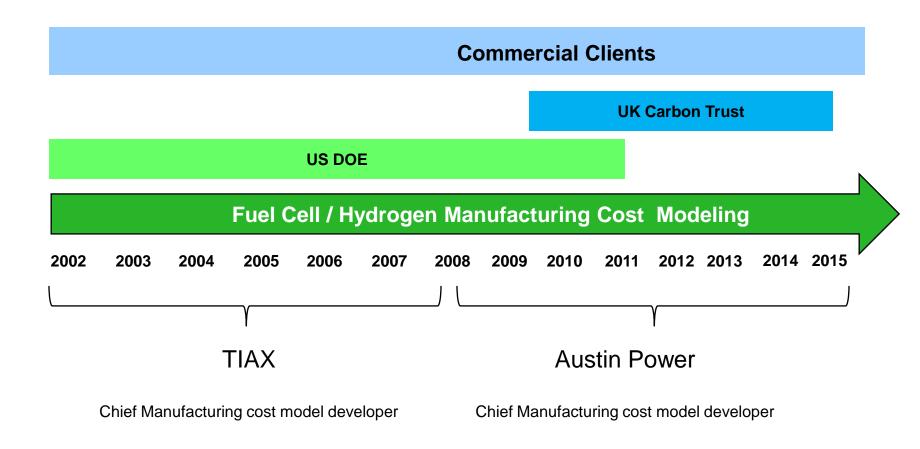
## PEM Fuel Cell System Manufacturing Cost Analysis for Automotive Applications



Yong Yang President

November 17, 2015

Austin Power Engineering LLC 1 Cameron St Wellesley, MA 02482 USA


www.AUSTINPOWERENG.com

yang.yong@austinpowereng.com

© 2015 Austin Power Engineering LLC

### **Introduction** Overview

Have been working on fuel cell manufacturing cost modeling for US DOE, UK Carbon Trust, and commercial clients since 2002.





## **Approach** Manufacturing Cost Modeling Methodology

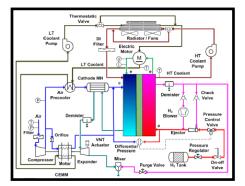
This approach has been used successfully for estimating the cost of various technologies for commercial clients and the DOE.

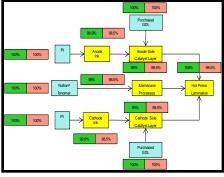
### Technology Assessment

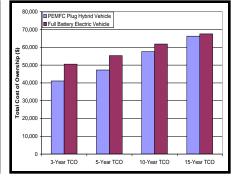
#### Literature research

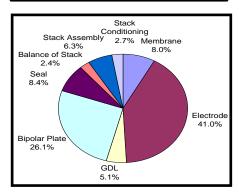
- Definition of system and component diagrams
- Size components
- Develop bill-ofmaterials (BOM)

## Manufacturing Cost Model


- Define system value chain
- Quote off-shelve parts and materials
- Select materials
- Develop processes
- Assembly bottom-up cost model
- Develop baseline costs


## Scenario Analyses

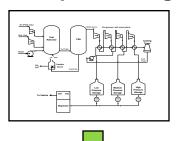

- Technology scenarios
- Sensitivity analysis
- Economies of Scale
- Supply chain & manufacturing system optimization
- Life cycle cost analysis


## Verification & Validation

- Cost model internal verification reviews
- Discussion with technical developers
- Presentations to project and industrial partners
- Audition by independent reviewers



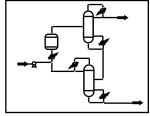









## Combining performance and cost model will easily generate cost results, even when varying the design inputs.


### **Conceptual Design**



System layout and

equipment requirements





**Process Simulation** 





- Energy requirements
- Equipment size/ specs



## **Capital Cost Estimates**

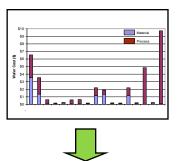






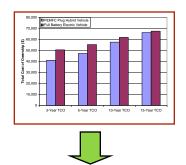





 Safety equipment, site prep, land costs





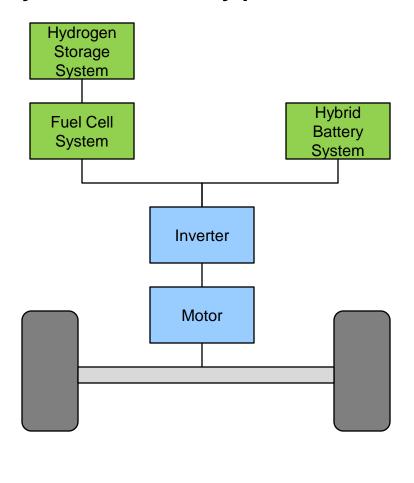

High and low volume equipment costs

#### **Process Cost Calcs**



- Process cost
- Material cost

#### **Product Costs**




 Product cost (capital, O&M, etc.)



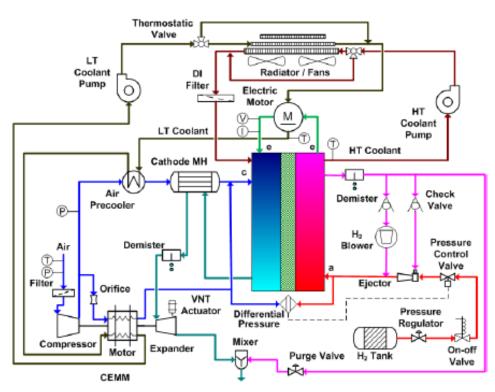
## Approach Scope

Conduct a bottom-up manufacturing cost analysis of a 80kW light-duty vehicle fuel cell power system which includes a fuel cell system, a hydrogen storage tank, and a hybrid NIMH battery pack.



Not included in the analysis

Included in the analysis


## Approach Scope

We published various fuel cell vehicle powertrain configurations manufacturing cost analysis in the past years.

| Specifications            | 2012 FCS            | 2013 FCS          | 2014 FCS         | 2015 FCS          |
|---------------------------|---------------------|-------------------|------------------|-------------------|
| PEM fuel cell system      | •65 kWe             | •80 kWe           | •80 kWe          | •80 kWe           |
| On-board hydrogen storage | -Compressed H2      | -Compressed H2    | -Cryo-compressed | -Compressed H2    |
|                           | -5,000 psi          | -5,000 psi        | H2               | -10,000 psi       |
|                           | -Single tank        | -Single tank      | -Single tank     | -Two tanks        |
|                           | -5.6 kg usable H2   | -5.6 kg usable H2 | -10 kg usable H2 | -5.6 kg usable H2 |
| Hybrid battery pack       | -Li-ion battery     | -Li-ion battery   | -Li-ion battery  | -NiMH battery     |
|                           | -16 kWh             | -1.2 kWh          | -1.2 kWh         | -1.6 kWh          |
| Comments                  | Plug-in hybrid fuel | hybrid fuel cell  | hybrid fuel cell | hybrid fuel cell  |
|                           | cell vehicle        | vehicle           | vehicle          | vehicle           |



## The 80 kW<sub>net</sub> direct hydrogen PEM fuel cell system configuration is referenced in previous and current studies conducted by Argon National Laboratory (ANL).



80 kW<sub>net</sub> Fuel Cell System Schematic<sup>1</sup>

1. R. K. Ahluwalia, X. Wang, "Fuel cells systems analysis," 2013 DOE Hydrogen and Fuel Cells Program Review, Washington DC, May13-16, 2013.

#### **Key Parameters**

#### Stack

- 3M NSTFC MEA
- 25 μm supported membrane
- 0.153 mg/cm<sup>2</sup> Pt
- Power density: 834mW/cm<sup>2</sup>
- Metal bipolar plates
- Non-woven carbon fiber GDL

#### Air Management

- Honeywell type compressor /expender
- Air-cooled motor / Air-foil bearing

#### Water Management

- Cathode planar membrane humidifier with pre-cooler
- No anode humidifier

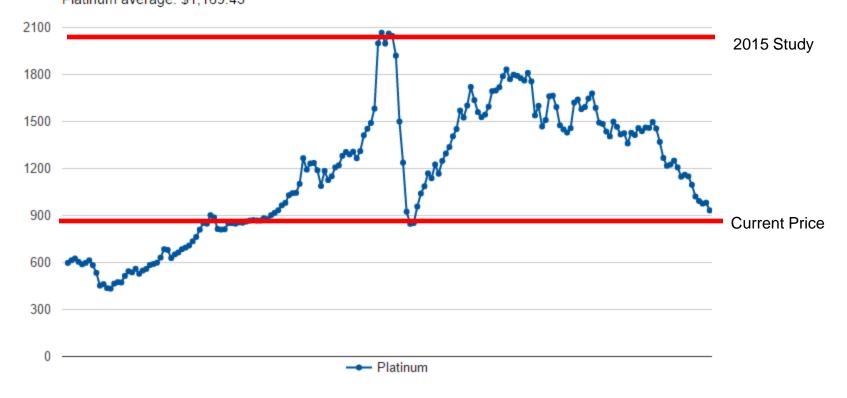
#### **Thermal Management**

Micro-channel HX

#### **Fuel Management**

Parallel ejectors



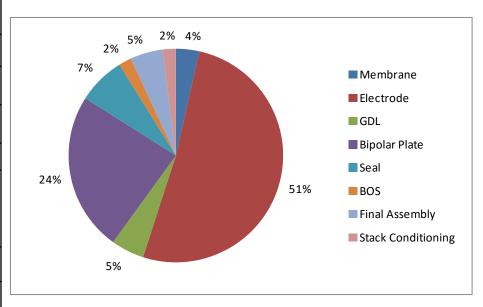

## Based on ANL's stack performance analysis, we make the following system and material assumptions for the cost estimation.

| Stack Components                      | Unit               | 2012                                            | 2013                                            | 2014                                 | 2015                                 |
|---------------------------------------|--------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------|--------------------------------------|
| Production volume                     | systems/ye<br>ar   | 500,000                                         | 500,000                                         | 500,000                              | 500,000                              |
| Stacks' net power                     | kW                 | 65                                              | 80                                              | 80                                   | 80                                   |
| Stacks' gross power                   | kW                 | 72                                              | 88                                              | 89.4                                 | 88                                   |
| Cell power density                    | mW/cm <sup>2</sup> | 930                                             | 984                                             | 692                                  | 834                                  |
| Peak stack temp.                      | Degree C           | 90                                              | 87                                              | 92.3                                 | 100                                  |
| Peak stack pressure                   | Bar                | 2.5                                             | 2.5                                             | 2.5                                  | 2.5                                  |
| Cell Voltage                          | Volt               | 0.67                                            | 0.676                                           | 0.695                                | 0.67                                 |
| System Voltage (rated power)          | Volt               | 300                                             | 300                                             | 300                                  | 300                                  |
| Platinum price                        | \$/tr.oz.          | \$1,475                                         | \$1,100                                         | \$1,100                              | \$2,000                              |
| Pt loading                            | mg/cm <sup>2</sup> | 0.15                                            | 0.196                                           | 0.153                                | 0.153                                |
| Membrane type                         |                    | Reinforced Nafion®                              | Reinforced 3M<br>PFSA                           | Reinforced 3M<br>PFSA                | Reinforced 3M<br>PFSA                |
| Membrane thickness                    | micro meter        | 20                                              | 25                                              | 25                                   | 25                                   |
| GDL layer                             |                    | None-woven carbon paper                         | None-woven carbon paper                         | None-woven carbon paper              | None-woven carbon paper              |
| GDL thickness                         | micro meter        | 185                                             | 185                                             | 185                                  | 185                                  |
| MPL layer thickness                   | micro meter        | 40                                              | 40                                              | 40                                   | 40                                   |
| Bipolar plate type                    |                    | 76Fe-20Cr-4V with nitridation surface treatment | 76Fe-20Cr-4V with nitridation surface treatment | SS316L with<br>Treadstone<br>Coating | SS316L with<br>Treadstone<br>Coating |
| Bipolar plate base material Thickness | micro meter        | 100                                             | 100                                             | 100                                  | 100                                  |
| Seal material                         |                    | Viton <sup>®</sup>                              | Viton <sup>®</sup>                              | Viton <sup>®</sup>                   | Viton <sup>®</sup>                   |



## We use Pt price at \$2,000/troz which is the similar to highest Pt price in the history.

Platinum Monthly Average prices between 17 Nov 2000 and 17 Nov 2015 JM Base Price \$/0z Platinum average: \$1,169.43



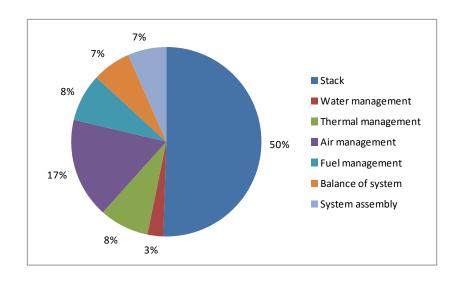



# The 80 kW $_{\rm net}$ PEM fuel cell stack costs approximately \$30/kW. Electrodes, bipolar plates, and seals are the top three cost drivers.

| Stack<br>Components      | 2015 Stack<br>Cost (\$/kW) | Comments                                                                       |
|--------------------------|----------------------------|--------------------------------------------------------------------------------|
| Membrane                 | \$1.06                     | PFSA ionomer<br>(\$75/kg)                                                      |
| Electrode                | \$15.37                    | Pt (\$2,000/troz)                                                              |
| GDL                      | \$1.50                     | No-Woven carbon paper                                                          |
| Bipolar Plate            | \$7.16                     | Treadstone Coating metallic plates                                             |
| Seal                     | \$2.14                     | Viton                                                                          |
| BOS                      | \$0.58                     | Manifold, end plates,<br>current collectors,<br>insulators, tie bolts,<br>etc. |
| Final Assembly           | \$1.47                     | Robotic assembly                                                               |
| Stack<br>Conditioning    | 0.60                       | 2 Hours                                                                        |
| Total stack <sup>2</sup> | \$29.88                    |                                                                                |

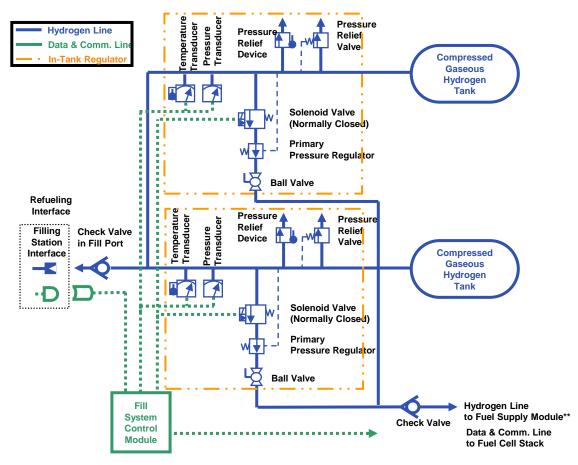
## 80 kW<sub>net</sub> PEM Fuel Cell Stack Cost (\$30/kW<sub>net</sub>)




- 1. Stack assembly cost category included MEA assembly and stack QC; QC included visual inspection, and leak tests for fuel, air, and coolant loops.
- 2. Results may not appear to calculate due to rounding of the component cost results.



The 80 kW<sub>net</sub> PEM fuel cell system costs \$59/kW at the mass production volume. Stack, air management, and thermal management are the top three cost drivers.


| System<br>Components         | 2015<br>System<br>Cost (\$/kW) | Comments                                      |
|------------------------------|--------------------------------|-----------------------------------------------|
| Stack                        | \$29.9                         |                                               |
| Water management             | \$1.6                          | Cathode side humidifier, etc.                 |
| Thermal management           | \$5.0                          | HX, coolant pump, etc.                        |
| Air<br>management            | \$10.1                         | CEM, etc.                                     |
| Fuel management              | \$4.8                          | H2 pump, etc.                                 |
| Balance of system            | \$3.9                          | Sensors, controls, wire harness, piping, etc. |
| System assembly              | \$3.9                          |                                               |
| Total system <sup>1, 2</sup> | \$59.3                         |                                               |

### 80 kW<sub>net</sub> PEM Fuel Cell System Cost (\$4,742/system)



- 1. Assumed 15% markup to the automotive OEM for BOP components
- 2. Results may not appear to calculate due to rounding of the component cost results.

## The 700 bar compressed hydrogen tank design is referenced in studies TIAX conducted on hydrogen storage<sup>1</sup>.



700 bar Compressed Hydrogen Storage System Schematic<sup>1, 2</sup>

#### **Key Parameters**

#### **System Volume**

• CH2 storage: 5.6kg usable H2

• System pressure: 700 bar

• # of tanks: 2

#### Tank

Carbon fiber: Toray T700S

• Carbon fiber / resin ratio: 0.68 : 0.32

(weight)

Translational strength factor: 63%

Safety factor: 2.25

Al liner

Glass fiber projection layer

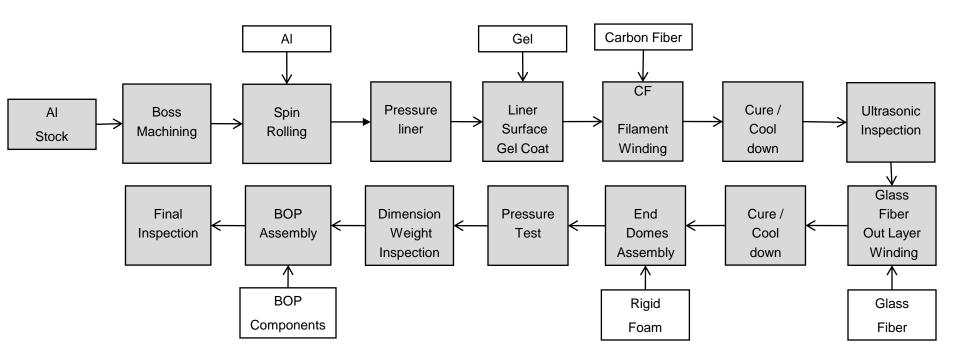
- E. Carlson and Y. Yang, "Compressed hydrogen and PEM fuel cell system," Fuel cell tech team freedomCar, Detroit, MI, October 20, 2004.
- S. Lasher and Y. Yang, "Cost analysis of hydrogen storage systems - Compressed Hydrogen On-Board Assessment – Previous Results and Updates for FreedomCAR Tech Team", January, 2007



## Assumptions for the hydrogen storage tank design were based on calculations, literature reviews, and third-party discussions.

| Stack Components                           | Unit         | Current System | Comments                             |
|--------------------------------------------|--------------|----------------|--------------------------------------|
| Production volume                          | systems/year | 500,000        | High Volume                          |
| Usable hydrogen                            | Kg           | 5.6            |                                      |
| Recoverable H2 in the tank                 | Kg           | 6.0            |                                      |
| Tank type                                  |              | IV             | With Al liner                        |
| Tank pressure                              | PSI          | 10,000         |                                      |
| # of tanks                                 | Per System   | 2              |                                      |
| Safety factor                              |              | 2.25           |                                      |
| Tank length/diameter ratio                 |              | 3:1            |                                      |
| Carbon fiber type                          |              | Toray T700S    |                                      |
| Carbon fiber cost                          | \$/lbs       | 12             |                                      |
| Carbon fiber vs. resin ratio               |              | 0.68:0.32      | Weight                               |
| Carbon fiber translational Strength factor |              | 63%            |                                      |
| Damage resistant outer layer material      |              | S-Glass        | Could be replaced by cheaper E-glass |
| S-Glass cost                               | \$/lbs       | 7              |                                      |
| Impact resistant end dome material         |              | Rigid Foam     |                                      |
| Rigid foam cost                            | \$/kg        | 3              |                                      |
| Liner material                             |              | Al             |                                      |




## A vertically integrated manufacturing process was assumed for the tank and BOP components.

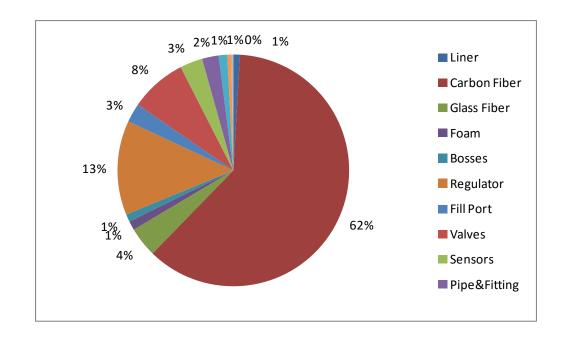
### **Major Tank Components**

- Aluminum End Boss
- Al liner
- Carbon fiber composite layer
- Glass fiber composite layer
- End domes (rigid foam)

### **Major BOP Components**

- In-tank primary pressure regulator
- Valves & sensors
- Filling interface
- Pressure release devices
- Piping & fitting

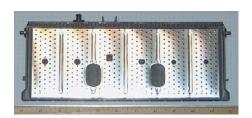





## **Compressed H2 Storage System** Cost

In the 700 bar compressed hydrogen storage system, the carbon fiber composite layers, in-tank regulators, system control valves are the top three cost drivers.

| System Components | 2015 CH2<br>Cost<br>(\$/kWh) |
|-------------------|------------------------------|
| Liner             | \$ 0.19                      |
| Carbon Fiber      | \$ 12.47                     |
| Glass Fiber       | \$ 0.85                      |
| Foam              | \$ 0.26                      |
| Bosses            | \$ 0.21                      |
| Regulator         | \$ 2.68                      |
| Fill Port         | \$ 0.54                      |
| Valves            | \$ 1.61                      |
| Sensors           | \$ 0.64                      |
| Pipe&Fitting      | \$ 0.47                      |
| Assembly          | \$ 0.24                      |
| Inspections       | \$ 0.12                      |
| Misc              | \$ 0.05                      |
| Total             | \$ 20.33                     |


## CH2 Storage System Cost (\$3,794/system)



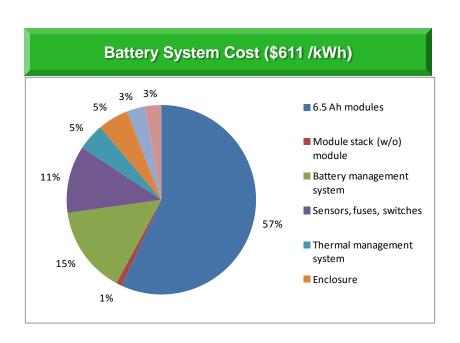
A NiMH battery pack will provide hybridization of a fuel cell vehicle which improves fuel economy as well as having the function as a startup battery. There are 34 6.5Ah-7.2V NiMH battery modules in the battery pack.



**Battery Pack** 



**Battery Module** 


http://afvsafetytraining.com/erg/Toyota-Camry-HV-2007-11.pdf

http://www.peve.jp/en/product/np2/index.html

| Specifications                             |                       |
|--------------------------------------------|-----------------------|
| Battery pack voltage                       | 245 V                 |
| Battery pack dimension                     | 190 x 850 x 495<br>mm |
| Battery pack weight                        | 52 kg                 |
| Battery pack energy                        | 1.6 kWh               |
| Number of NiMH battery modules in the pack | 34                    |
| NiMH battery module nominal voltage        | 7.2 V                 |
| NiMH battery module nominal capacity       | 6.5 Ah                |
| NiMH battery module Output                 | 1,350 W               |
| Anode active material                      | AB <sub>5</sub>       |
| Cathode active material                    | Ni(OH) <sub>2</sub>   |

The hybrid NiMH battery pack costs \$611/kWh. Battery modules, battery management system, and sensors have higher cost contributions.

| Cost Category             | 2015 Pack Cost<br>(\$/kWh) |  |
|---------------------------|----------------------------|--|
| 6.5 Ah modules            | \$347                      |  |
| Module stack (w/o) module | \$6                        |  |
| Battery management system | \$91                       |  |
| Sensors, fuses, switches  | \$70                       |  |
| Thermal management system | \$28                       |  |
| Enclosure                 | \$32                       |  |
| Misc.                     | \$19                       |  |
| Assembly and Testing      | \$17                       |  |
| Total (\$/kWh)            | \$611                      |  |



The 1.6 kWh lithium-ion battery system cost \$978 per pack at the mass production volume (500,000 packs/year).



### Conclusion

## PEM fuel cell system, onboard hydrogen storage, and hybrid battery cost approximately \$10,070 per vehicle.

| Cost Category                | 2012 Pack Cost<br>(\$/pack) | 2013 Pack Cost<br>(\$/pack) | 2014 Pack<br>Cost (\$/pack) | 2015 Pack<br>Cost (\$/pack) |
|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 80 kW <sub>e</sub> Fuel Cell | \$4,030 <sup>4</sup>        | \$4,256                     | \$4,713                     | \$4,742                     |
| 5.6 Kg Useable H2<br>Storage | \$3,058                     | \$3,028                     | \$4,567 <sup>2</sup>        | \$3,794                     |
| Hybrid Battery Pack          | \$4,497 <sup>3</sup>        | \$1,034                     | \$790                       | \$978                       |
| Total:                       | \$11,585                    | \$8,318                     | \$10,070                    | \$9,514                     |
| Comments                     | FC-PHEV                     | FC-HEV                      | FC-HEV                      | FC-HEV                      |

<sup>1. 65</sup>kWe fuel cell system

- The mass production manufacturing cost of the 80 kW<sub>net</sub> PEMFC stack is estimated to be \$30/kW.
- The mass production OEM cost of the 80 kW<sub>net</sub> PEMFC system is estimated to be \$59/kW
- The 5.6 kg 2-tank compressed on-board hydrogen storage system is estimated to be \$20/kWh at the mass production.
- The hybrid NiMH battery (1.6kWh) costs \$978 per pack or \$611/kWh.

<sup>2. 10</sup> kg useable hydrogen.

<sup>3. 16</sup> kWh li-ion battery pack

### Conclusion

## The PEM fuel cell middle size passenger vehicle purchase price is approximately \$27,089 at the mass production volume.

| Component Category               |                                         | PEMFC<br>Hybrid<br>(\$/unit) | Comments                                                                 |
|----------------------------------|-----------------------------------------|------------------------------|--------------------------------------------------------------------------|
| Glider                           | Glider                                  | 7,000                        | Mid-size passenger vehicle                                               |
|                                  | PEMFC                                   | 4,742                        | Bottom-up costing                                                        |
|                                  | H2 storage                              |                              | Bottom-up costing                                                        |
| Battery system                   | 978                                     | Bottom-up costing            |                                                                          |
| Power Chain                      | Power Chain Traction motor <sup>1</sup> |                              | Motor + controller + transmission                                        |
|                                  | Power electric <sup>1</sup>             | 840                          | Battery charger, main inverter, DC/DC converter, auxiliary inverter, etc |
| Power chain sub-<br>total        |                                         | 11,554                       | •                                                                        |
| Total vehicle manufacturing cost |                                         | 18,554                       |                                                                          |
| Markup <sup>2</sup>              |                                         | 46%                          | Corporation cost & profit, dealer cost, shipping cost, tax               |
| Purchase price for consumer      |                                         | 27,089                       |                                                                          |

<sup>1.</sup> The DOE advanced power electronics & electric motors (APEEM) team reported the power electronics cost \$7/kW and the motor cost \$10/kW in 2012.

<sup>2.</sup> Automobile Industry Retail Price Equivalent and Indirect Cost Multipliers, EPA, 2009



### **Conclusions** Cost Comparing with Battery

# Comparing a PEM FC vehicle with a middle size passenger electric vehicle which both have a drive range approximately 250 miles.

| EV Battery Pack Cost | 80kWh EV Battery Pack<br>Cost (\$) | 80kW PEMFC System*<br>Cost (\$) |
|----------------------|------------------------------------|---------------------------------|
| \$100 /kWh           | \$8,000                            |                                 |
| \$150 /kWh           | \$12,000                           |                                 |
| \$200 /kWh           | \$16,000                           | \$9,514                         |
| \$250 /kWh           | \$20,000                           |                                 |
| \$300 /kWh           | \$24,000                           |                                 |

|                                                                     | Energy (kWh)                                           | Total Energy (kWh) | Cost (\$/kWh) |
|---------------------------------------------------------------------|--------------------------------------------------------|--------------------|---------------|
| EV battery                                                          | 80kWh                                                  | 80 kWh             | \$100~300/kWh |
| PEMFC System* (Chemical Energy + Electric Energy)                   | 185 kWh (Chemical)<br>1.6 kWh (Electric)               | 186.6 kWh          | \$51 /kWh     |
| PEMFC System* (Converted<br>Chemical Energy** +<br>Electric Energy) | 92.5 kWh (Converted<br>Chemical)<br>1.6 kWh (Electric) | 94.1 kWh           | \$101 /kWh    |

<sup>•\*\*</sup> Assume the hydrogen to electricity efficiency is 50%



<sup>•\*</sup> Includes an 80kWe PEMFC, a CH2 storage tank, and a 1.6 kWH NiMH battery

## **Thank You!**

**Contact: Yong Yang** 

**Austin Power Engineering LLC** 

1 Cameron St, Wellesley, MA 02482

781-239-9988 978-263-0397 yang.yong@austinpowereng.com www.austinpowereng.com



20