

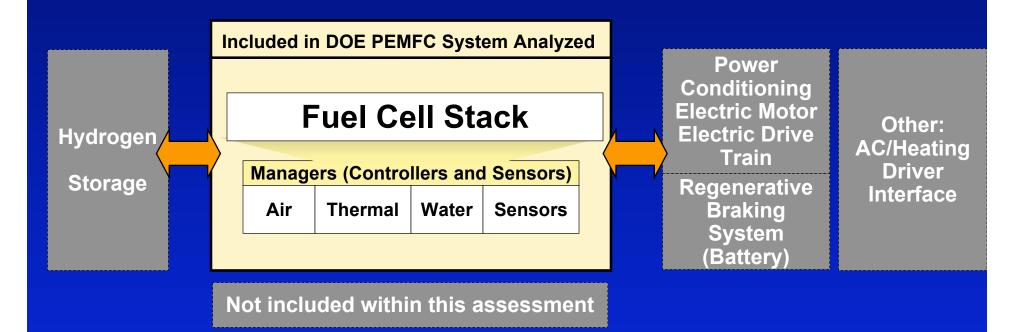
PEM Fuel Cell Cost Status - 2005

Fuel Cell Seminar November 14-18, 2005

Eric Carlson Peter Kopf Jayanti Sinha Suresh Sriramulu Yong Yang TIAX LLC 15 Acorn Park Cambridge, MA 02140-2390

Tel. 617- 498-5000 Fax 617-498-7200 www.TIAXLLC.com Reference: D0318

© 2005 TIAX LLC

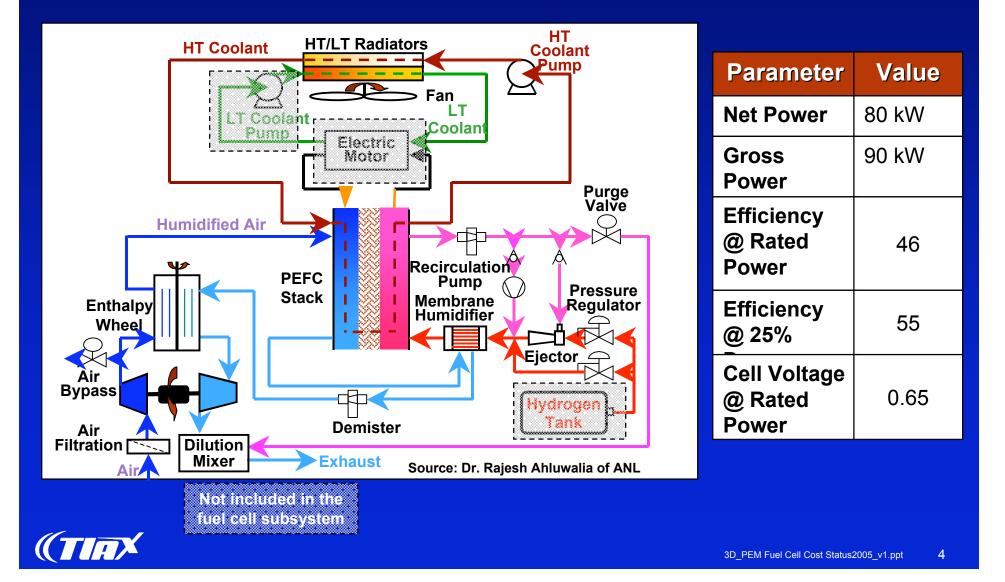

Outline

Project Overview Objective and Scope

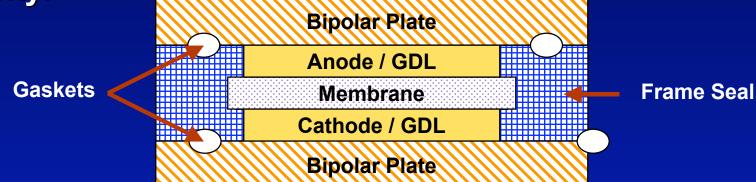
The status of PEMFC cost manufactured at high volume was assessed relative to the 2005 DOE target of \$125/kW.

The project scope included the fuel cell stack and related balance-of-plant components.

Project Overview Approach


The FreedomCAR Fuel Cell Tech Team and developers provided critical feedback to 2005 cost update.

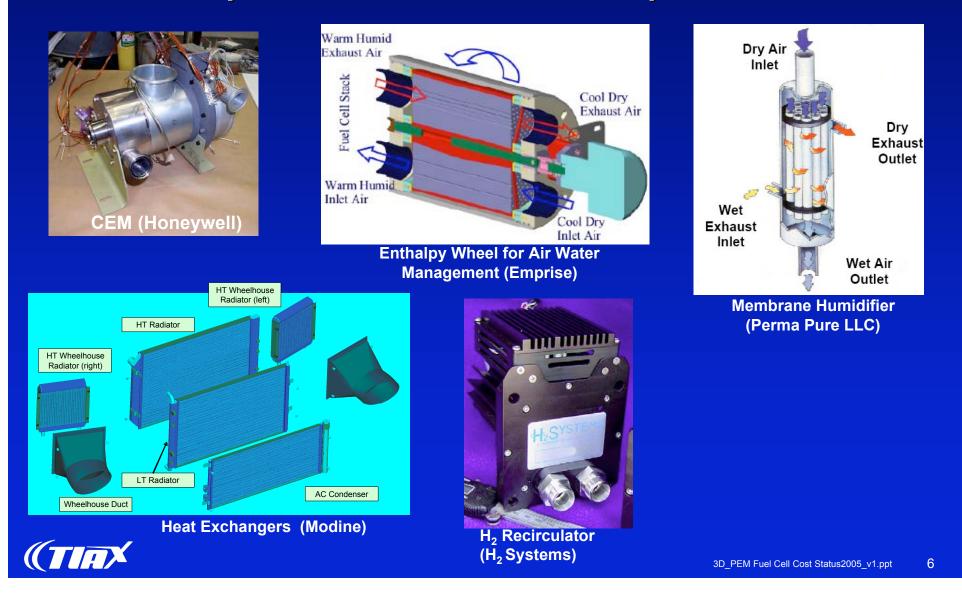
Task 1 Baseline Analysis	Task 2 Developer Feedback	Task 3 Final Report
 Update 2004 system specifications Bottoms-up assessment of membrane, bipolar plate, and GDL processing and material costs Work with ANL to develop system configuration and model Develop baseline cost estimate Prepare an interview guide for discussions with developers 	 Interview key developers for feedback on performance and cost assumptions Revise performance, process, and material assumptions based on developer feedback Perform sensitivity analysis to key parameters Assess impact of feedback on design parameters and potential technology breakthroughs on overall system costs 	 Prepare final written report Prepare final presentation to DOE


System Specification Configuration

ANL provided the system model and performance results to size the balance-of-plant components.

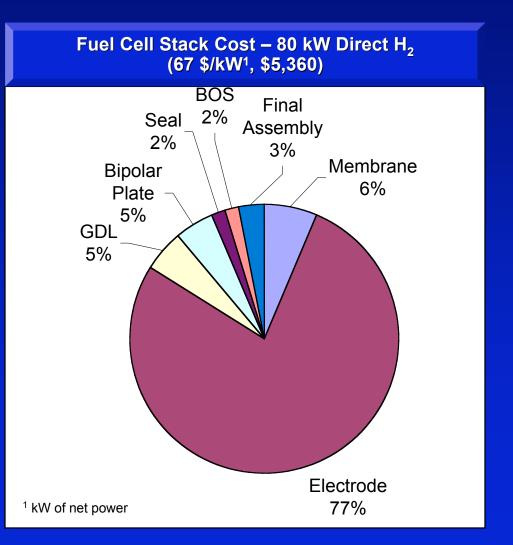
System Specification Stack Design

Stack parameters are key drivers of system cost and power density.


Parameter	Unit	2005 Value	S/C ¹
Stack Efficiency @ rated power	%	51.7	С
Cell Pitch	Cells/cm	3.8	С
Total Platinum Loading	mg/cm ²	0.75	S
Power Density @ 0.65 V	mW/cm ²	600	S
Total Stack Platinum	g/kW	1.4	С
Stack Power Density	W _e /L	1570	С
Stack Specific Power	W _e /kg	1380	С

5

System Specification BOP Components


We talked with developers of BOP components to estimate the cost and power losses for these components.

Cost Projections Stack

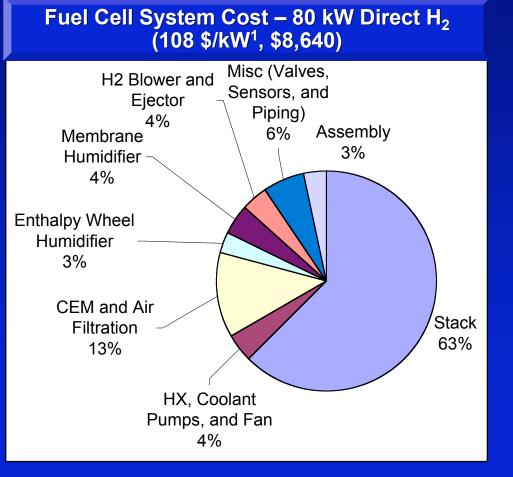
The electrodes dominated the stack cost because of the high platinum loading and price.

Parameter	Unit	2005 Value	
Pt Cost	\$/troz	900	
Pt Loading	mg/cm ²	0.75	
Stack QC and Conditioning not Included			

Cost Projections Stack Area Basis

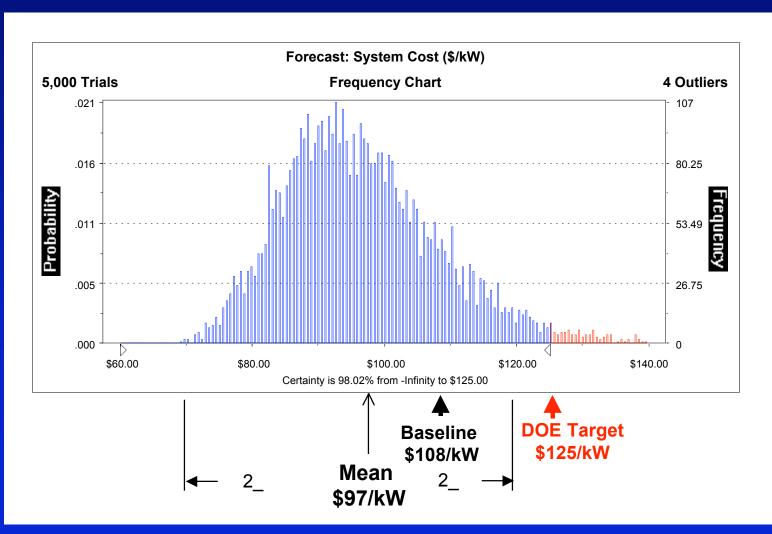
Increased Pt loading and cost resulted in a 60% higher stack cost on an area basis than 2004 despite decreases in all other materials.

Component	2005 Cost ¹ (\$/m²)	2005 Value
Membrane	23	2 mil unsupported membrane
Electrode	280	Catalyst markup over LME price – 20%
GDL	18	Thickness decreased from 350 to 260 µm
Bipolar Plate Pair	17	Expanded graphite, thinner plate
Seal, BOS, Assembly	22	Other stack components and materials
Total	360	

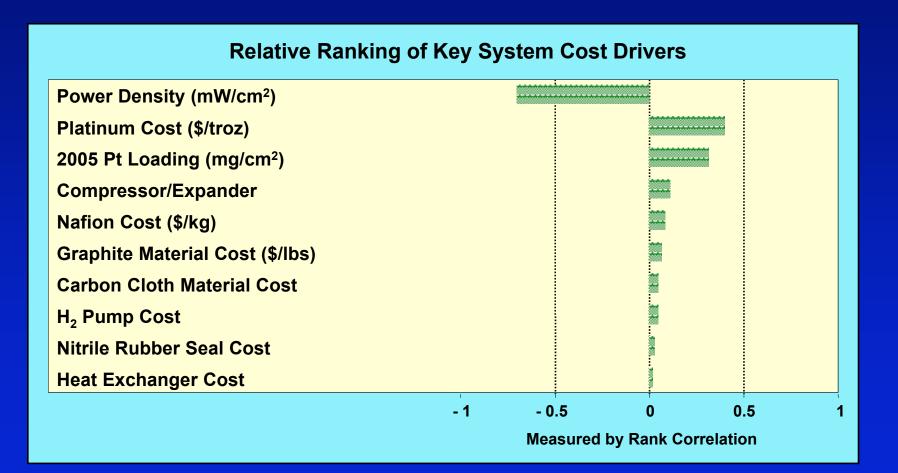

¹ m² of active area

Cost Projections System 2005 Baseline

The stack represents 63% of the 108 \$/kW system cost. Greater system complexity increased the BOP costs.


	2004 System Cost (\$/kW)	2005 System Cost (\$/kW)
Stack	72	67
BOP & Assembly	25	41
Total	97	108

Cost Projections System Monte Carlo Analysis


The analysis showed a high probability that the system cost would be below the DOE target of \$125/kW.

Cost Projections Key Cost Drivers

Power density, platinum cost, and platinum loading are the top three drivers for the system cost.

Summary Performance Relative to 2005 Targets

The specified system meets the DOE targets for specific power and cost but misses the efficiency targets by 5%.

Subsystem	Volume¹ (L)	Weight (kg)	Cost (\$/kW)	DOE 2005 Target
Stack	51	58	67	65 \$/kW
Stack power density (W _e /L)		1569		1500 W _e /L
Stack specific power (W _e /kg)		1379		1500 W _e /kg
Total fuel cell system size/weight	131	138	108	125 \$/kW
FC System power density (W _e /L)		610 ¹		500 W _e /L
FC System specific power (W _e /kg)		580		500 W _e /kg
FC System Efficiency @ rated power		46		50%
FC System Efficiency @ 25% rated power		55		50%

¹ Does not include packing factor, which would lower volumetric power density

Decreased bipolar plate thickness and higher stack power density were the main drivers for increased specific power.

Summary Future Considerations

Several factors will add to the challenge of meeting future cost targets.

Quality control will add to the projected 2005 costs

- Stack material quality will be critical to stack yields
- Burn-in protocols for rapid stack characterization will be important to minimize cost of this step
- Value chain margins will add to the stack cost if the stack integrator purchases components from suppliers
- In the future as fuel cell system costs are reduced, BOP, packaging, and system QC costs will become more important contributors

Acknowledgments

Thanks to the Office of Hydrogen, Fuel Cells & **Infrastructure Technologies and NREL for their** financial and program support Valri Lightner, Nancy Garland, Steve Chalk of DOE Keith Wipke of NREL Dr. Rajesh Ahluwalia of ANL continued to provide valuable system modeling, design support, and technology insights FreedomCAR Fuel Cell Tech Team for their inputs and feedback throughout the project The fuel cell component, stack, and system developers for their efforts in providing feedback on our assumptions and findings **Report Available as NREL/SR-560-39104**

