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Project Overview Background

We are in the process of evaluating the performance and
cost of various hydrogen storage options for the DOE.
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Project Overview Approach

On-board cost and performance estimates are based on
detailed technology assessment and cost modeling.
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Project Overview Scope

To date, we have evaluated compressed gas tanks, sodium
alanate, and sodium borohydride storage technologies.

Category

Compressed and
Liquid Hydrogen

Initial
Cases

5,000 &
10,000 psi

Tech
Status

Mature
(low
volume)

Storage
State

H, Release

Pressure
regulator

Refueling

H, gas

Reversible On-
board: Metal
Hydrides, Alanates

Sodium
Alanate

Proof of
Concept

Endothermic

desorption

H, gas
and HTF
loop

Regenerable Off-
board: Chemical
Hydrides

Sodium
Borohydride

Early
Proto-

type

Aqueous
solution

Exothermic
hydrolysis

Aqueous
solution
in/out

High Surface Area
Sorbents: Carbon

1 HTF = Heat Transfer Fluid

(TImX

TBD

R&D

Solid
(low T?)

Endothermic

desorption

H, gas
(low T?)
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System Designs Compressed Hydrogen Tank

Two type lll compressed hydrogen tanks were designed to
accommodate 5,000 and 10,000 psi storage pressures.

Metal Boss (aluminum) for Tank Access
(some constructions may also use a plug on
the other end)

Liner (polymer, metal, laminate)
HDPE 6.3 mm thick
Al 2.3 mm thick

Wound Carbon Fiber Structural Layer with
Resin Impregnation
(V;CF:Epoxy 0.6:0.4; W, 68/32)

Impact Resistant Foam End Dome

Damage Resistant Outer Layer (typically
glass fiber wound)
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System Designs Sodium Alanate Tank

A sodium alanate storage tank was designed to
accommodate both high pressure and rapid heat exchange.
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Al = Aluminum HTF = Heat Transfer Fluid
GF = Glass Fiber HX = Heat Exchanger

- CF = Carbon Fiber SS = Stainless Steel
Metal Foam
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System Designs Sodium Borohydride Components

A sodium borohydride storage system was designed to
accommodate solution storage and water management.
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System Designs Sodium Alanate Tank Manufacturing

Manufacturing processes and equipment are determined
based on the individual component designs.

B Spin Seal
Fill in NaAIH4 A X Ends To

and Binder i Machining
into Al Foam tatus + End Plates

Form Cylinder

Size SS 316
Tubes

Form Assembly Al
Al/SS 316 Form into Can
Fill in Hydrides

Laser Brazing
HE End Plate

In this case, we assume a tank manufacturing process that
loads the alanate in automated steps.
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System Designs Sodium Alanate System

The complete storage systems require significant BOP for
overall flow control and thermal management.

Fill Station
Interface

Refueling
Interface

Check Valve
in Fill Port

Hydrogen

Pressure

-VV? Relief

1
X | Valve Storage Tank
1
1

HTF** In ’ Sodium Alanate Pressuh

Pressure
Thermal Relief

Relief Valve
Device

Temperature
Transducer
Pressure
Transducer

Vessel w/ In-tank Heat

= Hydrogen Line

= Heat Transfer Line

= Data & Comm. Line

)

Temperature
Transducer

Heat Exchanger w/
Low NO, H, Combustor

Combustion Air
Blower

\ HTF Out ‘_ Exchanger / W/

Solenoid Valve
(Normally Closed)

Primary
Pressure Regulator

v

: L§ Ball Valve
Check Valye

Solenoid Valve a——

(Normally Closed) Hydrogen Line

Fill
System

Control to Fuel Control
Module

to Fuel Cell

*Note: Schematic is representative only.
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System Designs Caveats

We have evaluated system designs based on the current
technology, which does not always meet DOE targets.

Issues Comments/Impact of Meeting Target

Transient and | » Additional components or advanced designs may be needed
Start-up * May impact on-board efficiency and usable hydrogen stored

Material Life * Limited amount of real-world data
» Reformulated materials or advanced designs may be needed
* Major impact on life-cycle cost

* May impact on-board efficiency and usable hydrogen stored if
material performance degrades over time

Safety * Not all systems will have the same inherent safety
» Additional components will be needed

Refueling « Off-board requirements will be very different
* Major impact on life-cycle cost and fuel chain efficiency
* May impact on-board efficiency and usable hydrogen stored

Not all systems will perform exactly the same
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Results Weight Comparison

Compressed hydrogen storage at 5,000 and 10,000 psi
resulted in the lowest overall system weight.
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Results Volume Comparison

Sodium borohydride system with volume exchange design
would be somewhat smaller than a 10,000 psi system.

@ BOP

B Water Recovery
Sub-system
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system
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Borohydride

T 7 Note: Volume results do not include void spaces between components (i.e., no packing factor was applied).
'” SL/D0268/Challenges for Onboard Hydrogen Storage_final.ppt 11




Results Cost Comparison

Factory cost of the sodium borohydride system is projected
to be lower than the other systems evaluated thus far.
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T 7 Note: Factory cost results do not include refueling costs over the life of the storage system.
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Conclusions

Initial Cases

Both basic research and system-level engineering need to
continue if a viable storage system is to be developed.

Technology

5,000 &
10,000 psi

Potential Advantages

* High gravimetric density
* Most mature
* Relatively low fuel cost

* Relatively high fuel chain
efficiency

Potential Disadvantages

* Will not meet volumetric density
target

* High factory cost
* High-pressure storage

Sodium
Alanate

 Lower-pressure storage
* Relatively low fuel cost

* Relatively high fuel chain
efficiency

*Low gravimetric density

* High factory cost

*High energy, P, T requirements
» Slow startup

Sodium
Borohydride

« Conformable tank
Low factory cost
 Low-pressure storage
*“Pumpable”

* One-tank design and water
management challenges

* Fuel cost and fuel chain
efficiency TBD
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Conclusions Next Steps

We will continue to support DOE and the Grand Challenge
participants as they refine designs, processes, and
materials.

€ Preliminary results will continue to be refined based on
developer/stakeholder feedback and progress

& Off-board (WTT) analysis will begin on the initial cases

Task 1 report will summarize the results for the initial cases

Work with DOE, ANL and COEs to select and evaluate new
cases
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